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Definitions

Precision Agriculture: A farming management strategy that uses data-driven,

site-specific techniques to optimize agricultural inputs and outputs, aiming to

improve yield efficiency and sustainability [1].

Site-Specific Weed Management (SSWM): A precision agriculture approach

focused on detecting and treating weed-infested areas selectively, thereby reduc-

ing herbicide usage, minimizing environmental impact, and improving resource

efficiency [2].

Semantic Segmentation: A computer vision task that assigns a categorical label

to each pixel in an image, enabling fine-grained classification of different regions

such as crops, weeds, and soil in agricultural imagery [3].

Multispectral Imaging: A remote sensing technique that captures image data

across multiple spectral bands beyond the visible range (e.g., Near-Infrared,

Red-Edge), providing richer information for distinguishing vegetation charac-

teristics [4].

Unmanned Aerial Vehicle (UAV): An aerial platform capable of autonomous or

remotely piloted flight, used in agriculture to collect high-resolution imagery for

monitoring crop health, weed distribution, and field conditions [5].



Feature Pyramid Network (FPN): A deep learning architecture that combines

features at multiple spatial resolutions to improve object detection and segmen-

tation performance [6].

Pyramid Pooling Module (PPM): A component used in deep learning decoders

that aggregates global contextual information from multiple scales to refine

semantic segmentation outputs [7].

Vision Transformer (ViT): A deep learning model that applies transformer ar-

chitectures directly to image patches, enabling global attention-based feature

modeling across the entire input [8].
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List of Abbreviations

This section provides definitions for abbreviations used throughout the thesis.

CNN Convolutional Neural Network

UAV Unmanned Aerial Vehicle

SSWM Site-Specific Weed Management

RGB Red-Green-Blue (Visible Light Spectrum)

NIR Near-Infrared

RE Red-Edge

NDVI Normalized Difference Vegetation Index

FPN Feature Pyramid Network

PPM Pyramid Pooling Module

IoU Intersection over Union

mIoU Mean Intersection over Union

ViT Vision Transformer

MSI Multispectral Imaging
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Abstract

Weed infestation continues to be a significant impediment to sustainable and efficient

crop production. Precision agriculture aims to overcome such hurdles through reli-

able management processes that account for the complexity of site-specific knowledge

and data on weeds. UAV-based multispectral imaging can capture bands beyond

the visible spectrum including Near-Infrared and Red-Edge, can improve crop–weed

differentiation moving from traditional management practices based on traditional

RGB images. However, robust semantic segmentation using multispectral data is

still challenging due to spectral variation, occlusions, and the heterogeneous nature

of field settings.

This thesis proposes a hybrid CNN–Transformer segmentation framework tailored for

multispectral crop–weed mapping. The model integrates modality-specific ConvNeXt

encoders for spectral feature extraction, Swin Transformer blocks for global contextual

reasoning, a gated Feature Pyramid Network (FPN) for adaptive multispectral fusion,

and a Pyramid Pooling Module (PPM) for multi-scale decoding.

When evaluated on the WeedsGalore dataset, the proposed model achieved a mean

Intersection-over-Union (mIoU) of 90.04%, a considerable improvement over conven-

tional CNN-based and RGB-only baselines. Furthermore, zero-shot and few-shot

x



fine-tuning studies on carrot and onion field datasets show that the proposed model

has promising cross-domain generalization ability while learning from limited labeled

examples.

These findings highlight the potential for multispectral fused learning in conjunction

with hybrid architectures to drive site-specific weed management, paving the way

towards more scalable and sustainable agricultural practices.
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Chapter 1

Introduction

1.1 Motivation and Context

Agricultural production is vital to global food security, but it is under increasing

pressure from population growth, climate change, soil degradation, and resource con-

straints. As these issues escalate, the need to implement technology-driven solu-

tions that can effectively increase agricultural productivity while minimizing the en-

vironmental footprint becomes increasingly urgent. Precision agriculture represents a

paradigm shift enabling the spatially-resolved management of crops, inputs, and field

operations based on site-specific data.

Weed management is one of the most significant challenges in precision agriculture.
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Weeds absorb sunlight, water, and nutrients and compete with crops, reducing prof-

itability due to yield loss. Traditional weed control approaches employ an overall

herbicide application to fields, and this is often inefficient and damaging to the envi-

ronment. Whether useful or not, this blanket application is excessive, creating high

production costs, and aiding future resistant weed evolution [9, 10].

To solve these problems, the idea of Site-Specific Weed Management (SSWM) has

become popular. SSWM uses the detection and treatment of just the infested areas of

a field in order to maximize use of resources, cutoff unnecessary chemical applications

and mitigate environmental impacts of weed management. For SSWM to operate at

scale, though, requires accurate, high-resolution mapping of weed distributions under

varied and dynamic field conditions, which is challenging due to differences in crop

morphology, weed species diversity, soil backgrounds and environmental factors, such

as lighting and moisture.

From a new perspective, remote sensing technologies have reshaped agricultural mon-

itoring, providing a low-impact, large-scale, spatially explicit view of farmland and

crops. Specifically, Unmanned Aerial Vehicles (UAVs) with imaging sensors have be-

come widely available and low-cost platforms for agricultural data collection. UAVs

are able to acquire images at near centimeter-level resolution and provide substantial

information concerning crop health, soil health, and weed pressures over three critical

development periods of the plant.

2



Beyond conventional Red-Green-Blue (RGB) imaging, multispectral sensors mounted

on UAVs offer access to additional spectral bands, including Near-Infrared (NIR) and

Red-Edge (RE). The NIR band provides information related to plant biomass and

chlorophyll content, while the Red-Edge band is sensitive to early indicators of vege-

tation stress [10, 11]. Leveraging these bands allows for the computation of vegetation

indices such as the Normalized Difference Vegetation Index (NDVI), enhancing the

ability to differentiate crops from weeds even under visually ambiguous conditions.

Despite their advantages, multispectral datasets introduce challenges related to sen-

sor calibration variability, illumination inconsistencies, and the complexity of fusing

information across different spectral modalities.

1.2 Semantic Segmentation in Precision Agricul-

ture

Semantic segmentation—the process of assigning a categorical label to each pixel in

an image—has become a cornerstone of computer vision applications requiring fine-

grained scene understanding. [12] In agricultural contexts, semantic segmentation

enables detailed mapping of crops, weeds, and background elements at high spatial

resolutions, supporting site-specific interventions such as targeted herbicide applica-

tion or mechanical weeding [13, 14].
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Traditional computer vision techniques for segmentation relied on handcrafted fea-

tures such as color indices, texture descriptors, and geometric properties. While

these approaches achieved moderate success under controlled conditions, they often

exhibited poor robustness in real-world agricultural environments characterized by

significant variability in illumination, soil reflectance, plant morphology, and weed

species composition [13].

The advent of deep learning, particularly Convolutional Neural Networks (CNNs), has

dramatically advanced semantic segmentation by enabling models to learn hierarchi-

cal feature representations directly from raw imagery [12]. CNN-based architectures,

including Fully Convolutional Networks (FCNs) [3], U-Net [15], and DeepLabv3+ [16],

have demonstrated remarkable performance by extracting fine-grained local textures,

edges, and object structures. These models have been widely adopted for agricul-

tural segmentation tasks and have shown promising results in distinguishing crops

from weeds under challenging conditions.

Still, CNNs are inherently tied to local receptive fields and capturing long-range

dependencies will require stacking more convolutional layers - thus increasing costs

and complexity of the model and still not entirely eliminating the global context. In

agricultural imagery, where broader spatial patterns—such as planting rows or patch-

level distributions—can provide important cues for discrimination, this limitation

becomes critical.
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Transformers, originally developed for natural language processing, offer a compelling

alternative by modeling global relationships through self-attention mechanisms [17].

Vision Transformers (ViTs) and hierarchical variants like the Swin Transformer [18]

have shown state-of-the-art performance in various computer vision tasks by capturing

both local and global dependencies. Despite their potential, transformer-based archi-

tectures remain relatively underexplored in the domain of multispectral crop–weed

segmentation [19]. Furthermore, purely transformer-based models often require large

training datasets and significant computational resources, making them less practical

for many real-world agricultural applications [18, 19, 20].

Thus, a hybrid approach that combines the local feature extraction capabilities of

CNNs with the global reasoning strength of Transformers presents a promising de-

sign paradigm [21]. Additionally, effectively leveraging multispectral inputs, while

accounting for modality-specific characteristics, remains an open research challenge

that is crucial for improving segmentation performance in precision agriculture [22].

1.3 Research Gap and Motivation

Despite substantial advances in deep learning for agricultural segmentation, several

critical gaps persist. First, the majority of existing models are tailored to RGB im-

agery and do not fully exploit the rich spectral information available from UAV-based
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multispectral sensors. Naive fusion strategies that simply concatenate spectral bands

at the input level fail to capture the distinct semantic contributions of modalities like

NIR and Red-Edge, limiting their effectiveness [22, 23].

Second, CNN-based architectures, while powerful at extracting local features, are fun-

damentally constrained in their ability to model long-range spatial relationships—an

important consideration in agricultural fields characterized by occlusion, sparse weed

distributions, and complex planting patterns [24]. Although Transformer models offer

global context modeling, they have not been fully used in multispectral crop–weed

segmentation, particularly in a way that balances global reasoning with efficient local

feature extraction [25].

Third, cross-domain generalization remains a major bottleneck [14]. Models trained

on specific crop types, growth stages, or environmental conditions often fail to trans-

fer effectively to new domains without substantial retraining. Developing architec-

tures that can generalize with minimal labeled data—through few-shot adaptation or

lightweight fine-tuning—is critical for practical deployment across diverse agricultural

settings [26].

Motivated by these challenges, this thesis proposes a multimodal segmentation frame-

work that integrates modality-specific CNN encoders, Transformer-based refinement

modules, adaptive gated fusion strategies, and multi-scale context aggregation. The
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goal is to design a system that is robust, spectrally sensitive, and capable of general-

izing across different agricultural domains with minimal supervision.

1.4 Research Objectives and Questions

The primary objective of this research is to develop an efficient and scalable multi-

modal segmentation framework capable of accurately identifying crops, weeds, and

background at the pixel level using multispectral imagery gathered by UAVs. In order

to answer this aim, the study will address the following research questions:

† Q1: How can convolutional and transformer-based modules be fused to take ad-

vantage of both fine-grained local features with long-range spatial dependencies

for agricultural scenes?

† Q2: How can spectral diversity across RGB, NIR, and RE bands be effectively

fused to maximize class separability while retaining as much modality-specific

information as possible?

† Q3: Can hybrid CNN–Transformer model achieve state-of-the-art segmentation

performance on a complex multispectral benchmark, WeedsGalore, better than

conventional CNN-only models and RGB-only models?
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† Q4: To what level the proposed framework can generalize to other agricul-

tural domains, such as different crop types or field conditions, through few-shot

adaptation with minimal labeled data?

These are critical questions to address for advancing the possibilities of more practical

precision agriculture, deployable solutions based on deep learning.

1.5 Contributions

This thesis contributes to the field of precision agriculture and semantic segmentation

in the following ways:

First, it introduces a novel hybrid segmentation architecture that combines modality-

specific ConvNeXt encoders for spectral feature extraction with Swin Transformer

refinement for global context modeling. Second, it proposes a gated Feature Pyramid

Network (FPN) for adaptive multispectral fusion that allows the model to learn dy-

namic weighting of RGB, NIR, and RE modal spatial scales. Third, it demonstrates

a benchmark result of 90.04% mean Intersection-over-Union (mIoU) on the Weeds-

Galore benchmark suggesting better segmentation performance than previous state-

of-the-art results. Finally, consistent generalization of the proposed framework was

highlighted through both zero-shot and few-shot trained segmentation experiments
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on external carrot and onion field datasets that further established an excellent level

of adaptation with minimal supervision.

Altogether, these contributions will further the potential of scalable, data-efficient,

and spectrally expanded weed management solutions for sustainable precision agri-

culture.
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Chapter 2

Literature Review

This chapter provides a comprehensive summary of the literature base on seman-

tic segmentation, multispectral imagery, crop–weed classification, and multimodal

learning methods. It provides a final account of important developments, notes the

limitations of the current practice, and sets the stage for the design choices we made

in this thesis.

2.1 Deep Learning for Semantic Segmentation

Semantic segmentation—where a class label is assigned to each pixel in an image—has

emerged as an important foundational building block of modern computer vision
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that supports applications spanning across autonomous driving, medical imaging,

and agricultural monitoring [12]. In agriculture, especially for tasks like crop–weed

discrimination, semantic segmentation allows for a fine-grained and spatially coherent

understanding of a complex scene for the field.

The traditional way of doing semantic segmentation began with using experts to

handcraft features and then later applied classical machine learning classifiers like

Support Vector Machines (SVMs) and Random Forests. This approach worked well

in structured environments, but these pipelines were brittle to variations in illumina-

tion, plant morphology, and soil background; as such, their robustness in actual field

conditions was limited.

The emergence of deep learning – and particularly Convolutional Neural Networks

(CNNs) – has disrupted semantic segmentation by allowing us to learn end-to-end

from raw images. CNNs introduced the capability to automatically extract hierarchi-

cal feature representations, capturing local textures, edges, and structures with mini-

mal manual engineering. Early breakthroughs such as Fully Convolutional Networks

(FCNs) [3] laid the groundwork by replacing fully connected layers with convolu-

tional layers, allowing variable input sizes and dense output predictions. Subsequent

architectures such as U-Net [15] introduced encoder–decoder designs with symmetric

skip connections, facilitating the recovery of fine spatial details and improving seg-

mentation accuracy, especially for small or thin structures—an essential requirement
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in agricultural mapping. DeepLab series models [16] further advanced the field by

introducing atrous (dilated) convolutions and pyramid pooling modules to capture

multi-scale contextual information without sacrificing spatial resolution.

Despite these successes, convolutional networks suffer from an inherent weakness:

the receptive fields are always local. [3] Of course, the deeper the layers, the larger

the receptive field, but capturing the global dependencies over large input areas is a

formidable task, particularly in the context of UAV images, where planting patterns

and weed clusters may spread over vast regions.

In this case, the ability to aggregate global context without relying solely on local

receptive fields presents a compelling advantage for semantic segmentation tasks in

agriculture, where understanding broad spatial patterns is critical. In order to address

this problem, originally introduced in the natural language processing domain, the

Vision Transformers (ViTs) have been introduced [17]. They operate on images as

sequences of patches, and in this way, by capturing the relationships between all the

patches, they explicitly represent long-range spatial dependencies.

However, pure Vision Transformers come with substantial computational demands

and often require extremely large datasets for effective training—an impractical con-

straint in many agricultural applications. To mitigate these issues, hybrid architec-

tures have been proposed. Models such as the Swin Transformer [18] introduce hi-

erarchical representations with shifted window-based attention, balancing the ability
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to model both local and global contexts while maintaining computational efficiency.

Hybrid CNN–Transformer frameworks [21] further combine the inductive biases and

efficient feature extraction capabilities of CNNs with the global reasoning strengths of

transformers, achieving state-of-the-art results across multiple segmentation bench-

marks.

Despite these advancements in transfer learning, one area that remains relatively

overlooked in the literature is the effective application of transformers and hybrid

models to multispectral agriculture images. The majority of the literature remains

in a space that revolves around RGB, missing opportunities to take advantage of

extended spectral cues such as Near-Infrared (NIR) and Red-Edge (RE) bands for

improved vegetation discrimination. This forms a main motivation to address the gap

in the literature by integrating multispectral fusion with transformer-based hybrid

architectures in the research presented in this thesis.

2.2 Multispectral Imagery for Agricultural Map-

ping

Remote sensing is an important component of precision agriculture because it enables

large-scale, non-destructive monitoring of crop conditions. Multiple remote sensing

modalities exist, but multispectral imagery is the most unique of these information
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sources because it provides information in the visible spectrum and beyond, allowing

for more change detection within vegetation and more information about vegetation

health, growth trajectory, or species distinction than with only RGB imagery [27].

Multispectral imaging is the process of recording reflectance data in several spectral

regions. These regions, typically, include the visible ones: Red (R), Green (G), and

Blue (B), which register and convey color information as the human eye perceives

it [28]. In addition to these, multispectral cameras capture Near-Infrared (NIR) and

Red-Edge (RE) bands. The NIR band, which is centered at 840 nm, is very sensitive

to plant cell structure and biomass, with healthy vegetation showing high reflectance

in this region. The Red-Edge band, which is situated at the red edge of the spectrum

(around 730 nm), is especially useful for detecting early signs of plant stress and small

changes in chlorophyll concentration [10, 11].

Spectral characteristics allow for the derivation of vegetation indices like the Nor-

malized Difference Vegetation Index (NDVI) and Red-Edge NDVI (RENDVI) which

amplify the differences between healthy crops, stressed vegetation, and weeds, and

these indices have applications in situations from yield predictions to weed detection.

Unmanned Aerial Vehicles (UAVs) which have multispectral cameras have been the

predominant method for data collection since these UAVs provide high spatial resolu-

tion (centimeter dimensions), operational flexibility, and the opportunity for repeated

use at key meteorological growth stages of the crop [29]. In addition to the benefits
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mentioned above, UAVs are comparatively cheaper and customizable compared to

similar datasets derived from satellite or manned aerial imagers, and they offer rapid

spatial and temporal data collection capabilities to address site-specific needs.

Recent large-scale datasets such as WeedMap [11] and WeedsGalore [10] illustrate

the trend that a growing amount of UAV multispectral imagery available has been

annotated. These datasets have played a crucial role in facilitating the training and

benchmarking of deep learning models for crop–weed segmentation at scale.

Despite its advantages, working with multispectral imagery comes with its challenges.

Spectral variability that results from sensor specifications, lighting, and soil back-

grounds can complicate the task of building models that generalize between fields

and seasons [30]. Furthermore, the fusion of multiple spectral bands is non-trivial:

naive concatenation often fails to exploit the complementary information embedded

in different modalities, while improper integration can introduce redundancy or noise.

Additional practical issues, such as motion blur, shadowing, and radiometric incon-

sistencies in UAV imagery, further degrade the quality of input data [25].

To address these challenges, segmentation architectures will need to extract modality-

specific features as well as robustly fuse information across spectral channels. This

thesis aims to develop models that are designed specifically for agricultural multi-

spectral datasets.
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2.3 Datasets for Crop and Weed Segmentation

The advancement of deep learning models for crop–weed segmentation relies heavily

on high-quality, annotated datasets that capture the complexity and variability of

real-world agricultural environments. Over the past decade many benchmark datasets

have been proposed; each varying in the types of crops, imaging modalities, spatial

resolution, and granularity of the annotations that were made. Reviewing datasets

can provide necessary context for the dataset choices and evaluation framework used

in this thesis.

The Crop/Weed Field Image Dataset (CWFID) [31] was among the earliest

contributions in this domain, examining early-stage carrot fields utilizing grainy mul-

tispectral images obtained through ground robots from the field. CWFID provided

Red and Near Infrared (NIR) bands, which allowed for basic vegetation differenti-

ation; however, because it had a limited number of images (only 60) and included

only one crop species, it had limited value for training contemporary deep learning

architectures that require many different images from many other species in large

quantities.

To meet the increasing demand for scale mapping, the WeedMap dataset [11] in-

cluded high-resolution UAV-generated orthomosaics of sugar beet fields. It provided
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access to up to 12 spectral bands, including RGB, NIR, and NDVI. WeedMap allowed

for large-scale semantic segmentation experiments in realistic situations. However,

practical challenges, such as marked class imbalance and the small spatial footprint

of many weed instances, often resulted in inferior segmentation performance, espe-

cially for minority classes.

Most recently, the PhenoBench dataset [32] expanded the scope of the previous

datasets by providing dense pixel-wise annotations of crop leaves and weeds over sev-

eral growing seasons. PhenoBench emphasizes the fine-grained vegetation structure,

while the extremely high spatial resolution (1 cm) and dense labeling/annotation

introduce significant computation demands when applied to model training and in-

ference pipelines.

The CropAndWeed dataset [33] shifted the emphasis toward species-level identifi-

cation and provides 74 weed classes annotated in RGB images. While the annotated

instances present an opportunity for accurate species-level recognition and, ultimately,

further species identification in agricultural settings, the complexities of the taxon-

omy and limited use of sensing modalities create limitations to building generalized

multispectral models complementary to agriculture.

Among recent contributions, the WeedsGalore dataset [10] is particularly useful

for this work. WeedsGalore contains dense, pixel-level annotations of maize fields

taken at many dates and seasons with UAV-mounted multispectral cameras. It has
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five aligned spectral bands (RGB, NIR, and Red-Edge), a large ground sampling

distance (GSD) of 2.5 mm, and encompasses differences in crop growth stages, weed

densities, and soil backgrounds. These features make it well suited for investigating

multispectral fusion methods and robustness under spectral and temporal variability.

Along with WeedsGalore, two additional datasets were used for cross-domain evalu-

ation: Carrots 2017 and Onions 2017. Both datasets consist of aligned RGB and

NDVI images taken using UGVs with manually created weed segmentation masks.

Although these two datasets are smaller than WeedsGalore, they provide domain

shifts regarding crop morphology, planting structure, and background appearance.

These shifts offer a suitable opportunity to evaluate generalization performance in

zero-shot and few-shot scenarios.

To provide a clearer comparison of these datasets and highlight their respective

strengths and limitations, Table 2.1 summarizes their key characteristics.

Table 2.1
Comparison of Crop–Weed Segmentation Datasets

Dataset Year Crop Platform GSD (mm) Modalities
CWFID [31] 2014 Carrot UGV ∼9.0 Red, NIR
WeedMap [11] 2018 Sugar Beet UAV ∼3.8 RGB, NIR, NDVI
PhenoBench [32] 2024 Sugar Beet UAV ∼1.0 RGB
CropAndWeed [33] 2023 Mixed UGV N/A RGB
WeedsGalore [10] 2025 Maize UAV 2.5 RGB, RE, NIR
Carrots 2017 2017 Carrot UGV ∼3.5 RGB, NDVI
Onions 2017 2017 Onion UGV ∼3.5 RGB, NDVI

Although several datasets have helped advance crop–weed segmentation approaches,
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WeedsGalore is this thesis’s primary benchmark for training and validation purposes.

Carrots 2017 and Onions 2017 are key benchmarks for assessing cross-domain robust-

ness and few-shot adaptations.

2.4 Existing Approaches for Crop–Weed Segmen-

tation

Over the last ten years, crop–weed segmentation has moved from handcrafted feature-

engineering approaches to more advanced deep learning architectures. This section

covers the varying trends and challenges of the existing approaches and includes

significant findings that motivate the architectural design of this work.

The first crop–weed identification methods heavily depended on handcrafted features

such as texture features, color indices (e.g., Excess Green, NDVI), and morphological

features. Classical machine learning algorithms (Support Vector Machines, Random

Forests, or k-nearest Neighbors) were also trained to produce vegetation pixels with

these manually extracted features [13, 34]. While traditional methods were effective

in a controlled setting, they have inherently low robustness across seasons, fields, or

crop types. Variability in illumination, soil backgrounds, plant morphology, and weed

species reduced performance and required tedious re-engineering of features to deploy

a new crop–weed identification model.
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Since the introduction of deep learning and Convolutional Neural Networks (CNN),

there has been a clear trend toward performing end-to-end feature learning from

imagery [11, 30]. Exemplar CNN-based architectures, such as U-Net [15] and

DeepLabv3+ [16], can be used as baseline models for semantic segmentation in pre-

cision agriculture. Impressive works like WeedMap [11] show how effective CNNs can

be for UAV-based multispectral imagery and significantly improve over prior modal-

ities. Bosilj et al. [30] tested transfer learning between cropping types, proving that

transfer learning is capable across domains.

Nevertheless, CNN’s approaches are inherently limited. CNNs shape their topology to

derive local spatial features, like edges and textures. However, they struggle to model

more global context, preferencing to distinguish crops and weeds among obscuration

or patchy field patterns. Although multilayered CNNs have processed multispectral

data, earlier work suffered from näıve fusion methods that concatenated the pixel

values across the bands with no respect for the nature of each band’s unique semantic

latent space.

More recently, researchers began considering transformer-based models to avoid the

problem space associated with CNNs. Vision transformers (ViT) or Swin transformers

allow for self-attention, which can aid in modeling long-distance dependencies across

the entire image [9, 35]. For example, Zhao et al. [9] also used a transformer backbone

on UAV-based weed mapping, showing enhanced reasoning capabilities compared to
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conventional CNNs. Wang et al. [35] also used Swin Transformer blocks with transfer

learning across two stages to increase generalizability across different agricultural

contexts.

Though transformer-based methods show great potential, their use in precision agri-

culture is still relatively new. Most current applications are exclusively based on RGB

images and do not fully take advantage of the range obtained from multispectral im-

agery. Additionally, transformer usage is typically more computationally intense,

making it particularly challenging to deploy on UAVs where memory and processing

speed are limited [36].

Using multispectral data—specifically bands from Near Infrared (NIR) and Red-Edge

(RE)—is essential for accurate crop–weed classification [10, 11]. Multispectral fusion

methods cover this idea quite well. Early fusion methods concatenate the spectral

bands into one at the input; while simple to implement, they treat all bands as

equal. Thus, valuable modality-specific information content is mainly missed. Late

fusion methods, where you have a different feature extractor for each modality and

then merge the features later on in the layers [33], discriminate between modalities

since each of the feature extractors represent features from each input modality, but

they increase complexity. Attention and gating-spectral modalities methods also offer

improvements since they are method agnostic in their ability to weight modalities

as they merge them. Thus, they can be robust to modality noise and variability

21



in the field. However, few studies on crop weed segmentation have explored these

approaches.

Despite the advances assembled by deep learning, several limitations remain across

all existing approaches. First, RGB reliance limits the potential of the spectral in-

formation of multispectral images, such as NIR and Red-Edge bands. Second, spec-

tral fusion strategies generally treat all bands the same and provide no means for

adaptive, modality-aware fusion strategies. Third, while CNN-based models are bi-

ased toward local context, they typically do not have enough long-range reasoning to

overcome occlusion biases, dense planting patterns, or nuanced morphological cues.

Finally, cross-domain generalization (i.e., transfer to different crops, field conditions,

or environmental variances) still requires significant amounts of real labeled data and

rewriting.

This proof of concept demonstrates the important ramifications of developing segmen-

tation architectures capable of taking advantage of multispectral diversity, modeling

fine-grained and global contexts, and generalizing to agricultural contexts.

The next chapter details the proposed architecture, which explicitly expands on this

gap by proposing a hybrid CNN–Transformer model for multispectral crop–weed seg-

mentation from UAV images.
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Chapter 3

Methodology

3.1 Problem Formulation

The main methodology of this thesis is to construct a high-accuracy multispectral

semantic segmentation model capable of identifying crops, weeds, and backgrounds

in imagery taken by UAVs. This chapter will formalize the problem definition, inputs

and outputs, and evaluation metrics for assessing model performance, building on the

principles of semantic segmentation mentioned in previous chapters.

The model input is a five-channel multispectral image consisting of spatially located

bands of Red (R), Green (G), Blue (B), Near-Infrared (NIR), and Red-Edge (RE)

with a respective spatial resolution of 600 × 600 pixels. Each input sample can be
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represented as a tensor X ∈ R5×600×600.

The output from the model is a pixel-by-pixel picture-wide semantic mask Y ∈

{0, 1, 2}600×600, that classifies the pixels into one of three classes:

† Class 0: Background (soil, residues, non-vegetative covers)

† Class 1: Crop (the target crop)

† Class 2: Weed (the unwanted vegetation)

Formally, the segmentation function fθ parameterized by θ is defined as:

Y = fθ(X)

where X is the multispectral tensor input, and Y is the predicted class map.

3.2 Dataset Description

This research primarily operated with the WeedsGalore dataset [10], a comprehensive

benchmark dataset based on UAV multispectral images for semantic and instance

segmentation of crops and weeds in maize fields. The WeedsGalore dataset provides
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a realistic and challenging environment for evaluating segmentation models, especially

for multispectral learning frameworks in precision agriculture.

3.2.1 Overview of the WeedsGalore Dataset

The WeedsGalore dataset was collected from an agricultural maize field in Marquardt,

Potsdam, Germany, about 1840 m2 in size. The dataset was collected over four

campaigns—May 25, May 30, June 6, and June 15, 2023—capturing different crop

and weed growing stages. During each campaign, images were acquired using a UAV

(DJI Phantom P4 Multispectral) with five spectral bands-RGB (Red, Green, Blue),

Red-Edge, and Near-Infrared allocated vertically.

Approximately 1150 raw images were collected for each campaign, and 156 high-

quality photos were selected and densely annotated for semantic and instance seg-

mentation. The chosen images were cropped and standardized to be 600×600 pixels,

achieving a ground sampling distance (GSD) of 2.5 mm. A GSD of 2.5 mm means

each 600×600 image covers a 2.5m×2.5m area, providing granular resolution for crop-

weed segmentation. The annotations cover five classes: Maize, Amaranth, Barnyard

Grass, Quickweed, and Weed Other. The dataset is split into training (70%), valida-

tion (15%), and testing (15%) subsets.

An overview of the main attributes of the dataset is summarized in Table 3.1.
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Figure 3.1: Acquisition and annotation workflow for the WeedsGalore
dataset. Extracted from the original source [10]

Table 3.1
Key Characteristics of the WeedsGalore Dataset

Attribute Details
Location Marquardt, Germany
Collection Dates May 25, May 30, June 6, June 15, 2023
Platform DJI Phantom P4 Multispectral UAV
Spectral Bands Red, Green, Blue, Red-Edge, Near-Infrared
Ground Sampling Distance (GSD) 2.5 mm
Image Size 600×600 pixels
Annotated Classes Maize, Amaranth, Barnyard Grass,

Quickweed, Weed Other
Instances per Image >78 instances on average
Dataset Splits Train (70%), Validation (15%), Test (15%)

3.2.2 Multispectral Modalities and Data Structure

Every image sample from the WeedsGalore dataset is made up of five spectral bands:

† RGB Bands (Red, Green, Blue): Represent the visible portions of the
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spectrum that capture the texture, color, and structural patterns of vegetation

and soil.

† Red-Edge (RE): Sensitive to changes in chlorophyll and early signs of plant

stress, thus providing better feature separation for distinguishing healthy vs.

stressed vegetation.

† Near-Infrared (NIR): measures different biological compositions, such as

biomass and canopy structure, to improve the separation of vegetation from

bare soil.

Figure 3.2: Scaled input channels and original segmentation mask

This multispectral information offers complementary views of the field, making it

particularly effective for differentiating crops from weeds under varying growth stages

and lighting conditions.
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3.2.3 Preprocessing Pipeline

To prepare the WeedsGalore dataset for model training and evaluation, the following

preprocessing steps were applied:

1. Spectral Stacking: Each image’s five spectral bands (RGB, RE, NIR) were

stacked into a single 5-channel tensor, maintaining perfect pixel-wise registra-

tion.

2. Normalization: Band-wise normalization was applied to zero mean and unit

variance to stabilize optimization dynamics during training.

3. Semantic Label Remapping: The original five classes (Maize and four weed

types) were remapped into three classes to simplify the segmentation task:

† Class 0: Background (non-vegetation, bare soil)

† Class 1: Crop (Maize)

† Class 2: Weed (all weed species combined)

4. Data Augmentation: Data augmentation strategies, including random hor-

izontal flips, vertical flips, rotations, and brightness adjustments, were applied

to enhance robustness and mitigate overfitting.

The preprocessing pipeline ensures that the model has experienced a reasonable
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Figure 3.3: Scaled input channels and segmentation mask after prepro-
cessing.

amount of spatial and spectral variability to simulate deployment conditions. Fig-

ure 3.3 illustrates the scaled input channels and the resulting segmentation mask after

preprocessing.
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3.3 Proposed Architecture

The proposed segmentation framework is specifically designed for high-resolution mul-

tispectral UAV imagery in precision agriculture. It targets pixel-wise classification

into three classes—background, crop, and weed—by efficiently combining modality-

specific feature extraction, global context modeling, adaptive fusion, and context-

aware decoding.

An overview of the full model architecture is illustrated in Figure 3.4.

Figure 3.4: Overview of the proposed segmentation model architecture.
Separate modality encoders extract multi-scale features, which are refined
by Transformer blocks, fused via gated multi-scale integration, and decoded
into pixel-wise semantic maps.

The pipeline starts with modality-specific feature extraction. The input image con-

tains five spectral bands: Red, Green, Blue (RGB), Near-Infrared (NIR), and Red-

Edge (RE). To fully exploit the unique properties of each modality, the network

processes them through separate ConvNeXt-based encoders. The RGB stream uses a

pre-trained backbone, while the NIR and RE streams adapt ConvNeXt encoders by
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modifying the first convolutional layer to only accept single-channel input. This design

ensures that spectral features—such as biomass indicators from NIR or chlorophyll

sensitivity from Red-Edge—are captured independently and preserved throughout

the early stages of the network.

Following feature extraction, the architecture employs Swin Transformer refinement

blocks to improve the highest-level representations. The deepest feature map from

each modality is then passed to a Transformer module that models global context

with self-attention [37]. This is essential in understanding the high-level patterns in

agricultural imagery where crops and weeds are frequently spread over a spatially

distributed ’structure.’ The Transformer module adds a necessary level of compre-

hension where local convolutional features are enriched with semantic relationships

(contextual relationships), and the model gains a deeper understanding of scene-wide

spatial basis.

After transforming features from the three modalities, they are combined using a

gated multi-scale Feature Pyramid Network (FPN). The fusion module operates at

multiple spatial resolutions, allowing both low-level texture information and high-

level semantic context to contribute to the final representation. This also means

the contribution of each modality could be adaptively weighed using the learned

gating aspects of the model. This means it could learn to weigh features from the

more informative modalities more heavily while suppressing noisy features or less
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reliable signals, improving robustness under varying illumination, occlusion, or soil

background conditions.

Finally, the fused multi-scale feature map is reconstructed back into a dense seg-

mentation map by a decoder with a Pyramid Pooling Module (PPM). The decoder

encodes contextual information from multiple scales and projects the fused features

to the final three-class output on the exact resolution, 600× 600, as the original im-

age. The fusion of fine-level detail recovery with global-scene aggregation is needed

to semantically segment small weeds, jagged crop canopies, and mixed background

textures accurately [38].

The model processes input samples structured as five-channel images, which are nor-

malized band-wise during preprocessing. The input tensor is divided into three sepa-

rate streams, RGB, NIR, and RE, but it is not fused together until each stream has

passed through the modality-specific branches. This separation ensures that spectral

and spatial cues are optimally extracted and fused, rather than naively combined at

the input level.

To summarize, the proposed architecture possesses several advantages. By combining

modality specialization, global attention refinement, adaptive multi-scale fusion, and

efficient decoding, it addresses major challenges in crop–weed segmentation: spec-

tral diversity exploitation, long-range spatial reasoning, robustness to environmental

variability, and scalability to high-resolution UAV imagery.
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3.4 Modality-Specific Feature Extraction Using

ConvNeXt Encoders

The initial stage of the proposed segmentation pipeline extracts rich spatial and

spectral features from each input modality— RGB, NIR, and RE—using dedicated

ConvNeXt encoders. Processing each modality independently preserves their unique

semantic and spectral characteristics before further refinement and fusion, ensuring

optimal feature representation for crop–weed segmentation.

ConvNeXt [39] was selected as the backbone for feature extraction due to its mod-

ernized convolutional design, which integrates Vision Transformer (ViT) principles

while retaining the efficiency and strong inductive biases of convolutional neural net-

works (CNNs). Compared to traditional CNNs like ResNets or lightweight convolu-

tional backbones, ConvNeXt offers superior modeling of complex spatial relationships

through larger kernel sizes, simplified block structures, and deeper hierarchical stages.

These attributes make it ideal for high-resolution UAV agricultural imagery, where

both fine-grained textures (e.g., leaf edges) and broader contextual patterns (e.g.,

crop row alignments) are critical for accurate segmentation.

Each modality-specific ConvNeXt encoder follows a four-stage hierarchical structure,

based on the ConvNeXt-Tiny variant [39]. The input tensor—three channels for RGB
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or one channel for NIR and RE—is first processed by a stem layer, which applies a

4 × 4 convolution with stride 4. This operation reduces the spatial resolution from

600× 600 pixels to 150× 150 while increasing the channel depth to 96. For the RGB

branch, a pretrained ConvNeXt-Tiny model, initialized with ImageNet weights, is

used to preserve rich visual priors. For NIR and RE branches, the first convolutional

layer is modified to accept single-channel inputs, while deeper layers retain pretrained

weights, balancing spectral specificity with faster convergence.

The stem output flows through four sequential stages, each with progressively re-

duced spatial resolution and increased channel depth. The stages are illustrated in

Figure 3.5.

Figure 3.5: Modality-Specific ConvNeXt Encoder Architecture for RGB,
NIR, and RE channels. Each modality is processed through a separate Con-
vNeXt encoder to extract multi-scale features, maintaining spectral special-
ization before Swin Transformer refinement and FPN fusion.
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† Stage 1 (Shallow Features): Three ConvNeXt blocks operate at 150 × 150

resolution with 96 channels. This stage captures fine-grained local details, such

as leaf textures, small plant structures, and surface variations, critical for early

crop–weed discrimination.

† Stage 2 (Intermediate Features): A 2× 2 convolution with stride 2 down-

samples the feature map to 75 × 75, increasing channels to 192. This stage

encodes mid-level structures, including plant clusters, stems, and soil patterns.

† Stage 3 (Semantic Features): Another downsampling reduces the resolu-

tion to 37× 37, with 384 channels. Nine ConvNeXt blocks model higher-order

relationships, such as crop row alignments, weed patches, and canopy coverage

patterns.

† Stage 4 (Global Context Features): A final downsampling produces feature

maps at 18× 18 resolution with 768 channels. Three ConvNeXt blocks extract

deep semantic features, capturing broad spatial layouts to distinguish crops and

weeds under occlusion or complex field conditions.

Each ConvNeXt block employs an inverted bottleneck structure, consisting of:

1. A 7× 7 depthwise convolution for spatial mixing, expanding the receptive field

compared to standard 3× 3 kernels.

2. Layer normalization for stabilizing training.
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3. A pointwise 1× 1 convolution to expand channels (expansion ratio of 4).

4. GELU activation for non-linearity.

5. A second pointwise 1 × 1 convolution to reduce channels back to the input

dimension.

This design, with large 7×7 kernels, significantly enhances the receptive field, enabling

the network to capture contextual relationships across larger spatial extents, which

is essential for UAV-based crop mapping where patterns may span tens of meters.

The output feature map from Stage 4 (768 channels, 18 × 18) is projected to 256

channels using a 1 × 1 convolution to reduce computational load for subsequent re-

finement. This projected output is passed to modality-specific Swin Transformer

blocks for global context enhancement. Intermediate feature maps from Stages 1, 2,

and 3 (at 150× 150, 75× 75, and 37× 37 resolutions, with 96, 192, and 384 channels,

respectively) are preserved and, along with the refined Stage 4 output, are later fed

to the Feature Pyramid Network (FPN) for multi-scale and cross-modality fusion.

In summary, each modality-specific ConvNeXt encoder produces a pyramid of multi-

scale feature maps, with the Stage 4 output (256 channels, 18 × 18) sent to Swin

Transformer blocks for refinement and intermediate features (Stages 1–3) retained

for later fusion. The use of ConvNeXt ensures a balance between local detail preser-

vation and global semantic understanding [40], critical for high-accuracy pixel-wise
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crop–weed segmentation in heterogeneous agricultural environments. The modular

design, with separate encoders for RGB, NIR, and RE, maximizes spectral informa-

tion exploitation before further processing in the pipeline.

3.5 Transformer-Based Feature Refinement Using

Swin Tiny

Following modality-specific feature extraction by the ConvNeXt encoders, the archi-

tecture incorporates a transformer-based refinement stage to enhance global context

modeling. Agricultural UAV imagery presents challenges such as varying illumina-

tion, complex spatial arrangements, and subtle spectral differences between crops and

weeds. While ConvNeXt excels at capturing local textures and hierarchical features,

it is less effective at modeling long-range spatial dependencies. The Swin Tiny Trans-

former [18], a lightweight variant of the Swin Transformer, is employed to address

this limitation, providing efficient global contextual aggregation.

The Swin Tiny Transformer is designed for hierarchical feature extraction, utilizing a

shifted-window multi-head self-attention (W-MSA/SW-MSA) mechanism to balance

computational efficiency with global reasoning. Its compact architecture, with ap-

proximately 28 million parameters and 4.5G FLOPs for a 224×224 input, makes it
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suitable for high-resolution segmentation tasks while maintaining computational fea-

sibility. In this architecture, Swin Tiny is adapted to process the ConvNeXt output,

ensuring compatibility with the segmentation pipeline.

Figure 3.6: Swin Tiny refinement module for modality-specific feature
processing. Each module applies four Swin Transformer blocks with window-
based (W-MSA) and shifted window (SW-MSA) self-attention at 18 × 18
resolution to enhance global context.

Each modality-specific ConvNeXt encoder outputs a Stage 4 feature map of size

18× 18 with 256 channels. This feature map is projected to 18× 18 with 96 channels

using a 1 × 1 convolution, aligning with Swin Tiny’s initial embedding dimension.

Separate Swin Tiny modules for RGB, Near-Infrared (NIR), and Red-Edge preserve

spectral specialization before cross-modality fusion. Given the small input resolution,

a single-stage Swin Tiny configuration with four blocks is used to refine features

without further downsampling, maintaining the 18× 18 resolution.

Swin Tiny Components and Processing

Each Swin Tiny module processes the 18 × 18 × 96 feature map through four Swin

Transformer blocks, organized as two pairs alternating between W-MSA and SW-

MSA. The blocks are structured as follows:
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† Block 1 (W-MSA): Applies window-based multi-head self-attention within

non-overlapping 6 × 6 windows, covering approximately three windows per di-

mension. With three attention heads, W-MSA captures local contextual rela-

tionships.

† Block 2 (SW-MSA): Uses shifted window multi-head self-attention, apply-

ing a cyclic shift of 3 pixels to enable cross-window interactions, propagating

information globally.

† Block 3 (W-MSA): Repeats W-MSA to further refine local features.

† Block 4 (SW-MSA): Repeats SW-MSA to enhance global context.

Figure 3.7: Structure of a Swin Transformer block pair, showing the alter-
nating W-MSA and SW-MSA mechanisms with layer normalization, MLP,
and residual connections.

Each block includes layer normalization, multi-head self-attention (W-MSA or SW-

MSA), a multi-layer perceptron (MLP) with a 4× expansion ratio (96 to 384 in-

termediate channels), residual connections, and Drop Path regularization (rate 0.1).
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The internal structure of a W-MSA/SW-MSA block pair is illustrated in Figure 3.7,

showing the alternating attention mechanisms, layer normalization, MLP, and resid-

ual connections.

This sequence of blocks expands the effective receptive field, enabling the module to

capture large-scale patterns, such as crop row alignments or dispersed weed clusters,

which are critical for accurate segmentation in agricultural scenarios.

Output and Integration with FPN

After processing through the four blocks, each Swin Tiny module outputs a refined

feature map of size 18× 18× 96, enriched with global contextual relationships. This

output is projected back to 18×18×256 using a 1×1 convolution to ensure compat-

ibility with the Feature Pyramid Network (FPN). The projection aligns the channel

dimension with other ConvNeXt feature maps for consistent fusion.

The refined Stage 4 feature maps from each modality (RGB, NIR, Red-Edge) are

passed to the FPN, along with the intermediate ConvNeXt feature maps from Stages

1–3 (150 × 150 × 96, 75 × 75 × 192, 37 × 37 × 384). The FPN employs a top-down

architecture with lateral connections to integrate these multi-scale and multi-modal

features, producing a set of feature maps at resolutions 150×150, 75×75, 37×37,

and 18×18, each with 256 channels. The highest-resolution feature map (150×150)
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is then fed to the decoder, which generates the final 600 × 600 segmentation map

distinguishing crops, weeds, and background.

The overall architecture of the Swin Tiny refinement module is depicted in Figure 3.6,

showing the pipeline from ConvNeXt input to FPN integration.

In summary, the Swin Tiny refinement stage enhances ConvNeXt features by mod-

eling long-range dependencies, critical for recognizing complex agricultural patterns.

Its efficient window-based attention and modality-specific design ensure robust per-

formance while preserving spectral information. The refined features, combined with

ConvNeXt’s multi-scale outputs, enable the FPN to produce accurate semantic seg-

mentation under diverse field conditions.

3.6 Gated Multi-Scale Fusion and Pyramid Pool-

ing Decoder

Following modality-specific feature extraction by the ConvNeXt encoders and global

context enhancement by the Swin Tiny Transformer modules, the architecture pro-

ceeds with a crucial stage: adaptive fusion and decoding. In precision agriculture,

effectively integrating multispectral data is pivotal due to variable field conditions,

sensor inconsistencies, and diverse vegetation types. Thus, we introduce a tailored
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multi-scale Feature Pyramid Network (FPN) fusion module with an adaptive gating

mechanism, followed by a context-aware pyramid pooling decoder.

The multi-scale fusion stage integrates modality-specific feature maps from RGB,

Near-Infrared (NIR), and Red-Edge (RE) modalities, extracted by ConvNeXt and

refined by Swin Tiny. At each of the four feature scales extracted by ConvNeXt (1/4,

1/8, 1/16, 1/32 of the original 600×600 resolution, corresponding to 150×150, 75×75,

37×37, and 18×18), as well as the high-level transformer-refined maps at 18×18,

lateral 1×1 convolutions are first applied to unify the channel dimensions to 256.

This ensures consistent channel depths across scales and modalities for subsequent

fusion.

To dynamically emphasize the most informative modality at each spatial scale, we

employ learned gating convolutions. Specifically, at each scale, the modality-specific

feature maps are processed by 1×1 convolutions to generate intermediate represen-

tations, which are then passed through additional 1×1 convolutions followed by sig-

moid activations to produce the gating weights. Each modality’s feature map is then

element-wise multiplied by its corresponding learned gating weights, enabling the

model to adaptively balance modality contributions based on local spectral and spa-

tial context. This gated fusion block, applied at each scale, is illustrated in Figure 3.8.

Formally, for modality-specific feature maps FRGB, FNIR, and FRE at scale s, the gated
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Figure 3.8: Illustration of the gated FPN block, showing the adaptive
modality weighting process using 1×1 convolutions and sigmoid activations
to generate modality-specific weights for fusion at each scale.

fusion can be expressed as:

F
(s)
fused = σ(G

(s)
RGB)⊙ F

(s)
RGB + σ(G

(s)
NIR)⊙ F

(s)
NIR + σ(G

(s)
RE)⊙ F

(s)
RE (3.1)

where σ denotes the sigmoid activation, G
(s)
modality are the gating weights, and ⊙ rep-

resents element-wise multiplication.

After gating-based modality weighting, the resulting fused features at each scale are

combined via a hierarchical top-down pathway with lateral connections. Starting

from the deepest scale (18×18), features are progressively upsampled to the next

scale (e.g., 37×37) using bilinear interpolation and combined with higher-resolution

features (37×37, 75×75, 150×150) through element-wise addition, followed by refine-

ment using 3×3 convolutional layers with ReLU activations. This process produces

a set of multi-scale feature maps at resolutions 150×150, 75×75, 37×37, and 18×18,

each with 256 channels, aggregating both fine-grained and high-level semantic con-

text. Figure 3.9 visually illustrates this gated multi-scale fusion mechanism.
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Figure 3.9: Illustration of the gated multi-scale fusion module, employing
adaptive modality weighting via gating convolutions and hierarchical multi-
scale aggregation through an FPN-style structure.

To decode the fused multi-scale representation into dense, pixel-level segmentation

maps, we employ a context-aware decoder inspired by the UPerNet architecture. The

decoder takes the highest-resolution fused feature map from the FPN at 150×150 and

utilizes a Pyramid Pooling Module (PPM) to capture spatial context at multiple scales

effectively. Specifically, the fused features undergo spatial pooling at four predefined

scales (1×1, 2×2, 3×3, and 6×6), each followed by a 1×1 convolution to compress

feature dimensions. These multi-scale pooled representations are then upsampled to

150×150 using bilinear interpolation and concatenated with the original fused feature

map, enriching the representation with comprehensive global context alongside local

details.
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Subsequently, this combined feature map passes through two additional 3×3 convo-

lutional layers, each with Batch Normalization and ReLU activation, to refine spa-

tial consistency and enhance semantic accuracy. These layers enable the network to

smooth out inconsistencies introduced by multi-scale concatenation and learn com-

plex feature interactions, improving boundary delineation and semantic precision for

distinguishing crops and weeds. A final 1×1 convolution generates pixel-wise class

logits for the three semantic classes: background, crop, and weed. Finally, the class

logits are upsampled to the original 600×600 resolution using bilinear interpolation

for pixel-wise classification. This decoding approach significantly improves boundary

localization and segmentation robustness, particularly crucial for accurate delineation

of complex vegetation structures in agricultural imagery. Figure 3.10 illustrates the

pyramid pooling decoding structure employed.

Figure 3.10: Context-aware Pyramid Pooling Decoder module. Multi-scale
context pooling and fusion, followed by refinement convolutions, enhance
boundary precision and semantic consistency, crucial for agricultural seg-
mentation.

Overall, the integration of gated multi-scale fusion and pyramid pooling decoding

is essential for producing robust segmentation results. The adaptive fusion strategy
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dynamically emphasizes the most informative spectral modalities and scales, while the

context-rich decoding ensures accurate, fine-grained delineation of crops and weeds.

Collectively, these modules significantly contribute to the proposed architecture’s

effectiveness and reliability in multispectral semantic segmentation tasks for precision

agriculture.
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Chapter 4

Evaluation

This chapter shows the comprehensive evaluation of the proposed architecture. It

includes the complete training pipeline, loss functions, optimization methods and

experimental setup, with an analysis of both quantitative and qualitative results.

Finally, a conclusion with a performance comparison against state-of-the-art baselines

from the WeedsGalore benchmark.
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4.1 Training Strategy and Implementation Details

4.1.1 Loss Function and Class Imbalance Handling

In this thesis, due to the extreme class imbalance in the WeedsGalore dataset, con-

taining a significant number of background pixels and far fewer crop and weed pixels,

a composite loss function consisting of Dice Loss and Class-Balanced Focal Loss (CB-

Focal) was used.

† Dice Loss encourages overlap between prediction and ground truth masks,

especially effective for imbalanced segmentation and boundary-sensitive re-

gions [41]:

LDice = 1− 2
∑N

i=1 piyi + ϵ∑N
i=1(p

2
i + y2i ) + ϵ

† Class-Balanced Focal Loss scales the classic focal loss by the inverse effective

number of samples for each class, reducing bias toward dominant classes and

emphasizing hard examples [42]:

LCB−Focal = − 1− β

1− βnc
(1− pt)

γ log(pt)

48



The total training loss is defined as:

Ltotal = λ1 · LDice + λ2 · LCB−Focal, with λ1 = λ2 = 1.0

4.1.2 Optimization and Scheduling

Training is conducted using the AdamW optimizer with the following hyperparam-

eters:

† Learning rate: 1× 10−4

† Weight decay: 1× 10−2

† Scheduler: Cosine Annealing with 10 warm-up epochs, total training = 200

epochs

† Mixed Precision: Enabled using PyTorch Automatic Mixed Precision (AMP)

4.1.3 Data Augmentation and Normalization

Real-time data augmentation to improve model generalization was applied:

† Horizontal and vertical flips
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† Random rotations (0°, 90°, 180°, 270°)

† Brightness and contrast jittering

† Horizontal scaling and aspect ratio warping

All five spectral channels are normalized to zero mean and unit variance using statis-

tics computed from the training set.

4.1.4 Training Infrastructure

† Hardware: NVIDIA A100 GPU (80GB VRAM)

† Software Stack: PyTorch 2.0, CUDA 12.4, cuDNN 8.9

† Environment: Ubuntu 20.04, Python 3.10

† Libraries: TIMM 0.9.10, HuggingFace Transformers 4.37.2

† Memory Optimization: PYTORCH CUDA ALLOC CONF=expandable segments:True

4.2 Quantitative Results

Two input configurations were studied to assess the performance of the proposed

architecture, and detailed experimentation was performed on the WeedsGalore test
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set:

1. Multispectral (MSI) input: 5-channel input comprising RGB, Near-Infrared

(NIR), and Red-Edge (RE) bands.

2. RGB-only input: Standard 3-channel RGB input for baseline comparison.

To evaluate segmentation quality, the following metrics are used:

† Mean Intersection-over-Union (mIoU): Measures the average overlap be-

tween predicted and ground truth regions across all classes. For class c, IoU is

calculated as:

IoUc =
TPc

TPc + FPc + FNc

where TP, FP, and FN denote true positives, false positives, and false negatives,

respectively.

† Pixel Accuracy (Acc): Computes the ratio of correctly predicted pixels to

the total number of pixels:

Acc =

∑2
c=0TPc

Total Pixels
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† F1 Score (F1): Represents the harmonic mean of precision and recall for each

class:

F1c = 2× Precisionc × Recallc
Precisionc +Recallc

where:

Precisionc =
TPc

TPc + FPc

and Recallc =
TPc

TPc + FNc

These metrics are selected to address class imbalance and ensure per-class perfor-

mance, critical for agricultural applications where weeds may be sparse compared to

crops and background.

Performance Metrics

The test set evaluation demonstrates a significant performance improvement when

leveraging multispectral inputs over RGB alone.

The MSI configuration significantly outperforms RGB-only across all metrics, espe-

cially for the crop and weed classes. The improvements in crop IoU (+47.95%) and

weed IoU (+31.87%) highlight the strong benefits of integrating spectral modalities
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Table 4.1
Performance Comparison: Multispectral vs RGB-only Inputs on

WeedsGalore Test Set

Class Input IoU F1 Score Precision Recall

Background
MSI 0.9900 0.9950 0.9950 0.9949
RGB 0.9794 0.9896 0.9863 0.9930

Crop
MSI 0.8700 0.9305 0.9316 0.9294
RGB 0.3905 0.5616 0.6477 0.4957

Weed
MSI 0.8411 0.9137 0.9116 0.9158
RGB 0.5224 0.6863 0.7028 0.6705

Mean IoU 90.04% (MSI) 63.08% (RGB)
Overall Accuracy 99.03% (MSI) 97.12% (RGB)

such as NIR and Red-Edge.

Confusion Matrices

The following confusion matrices summarize the raw pixel classification results for

both models:

Multispectral (MSI) Model:


15791643 21114 60107

20382 310255 3202

58389 1677 653231


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RGB-only Model: 
8615339 19656 41184

40879 92496 53210

79047 30647 223266



In both cases, background pixels dominated in the predictions. However, the MSI

model shows much better classification consistency for both crop and weed pixels,

reducing misclassification errors across minority classes. The substantial drop in false

negatives and improved diagonal dominance validate the model’s improved precision

and recall for each class.

The proposed model achieved a mean IoU value of 90.04% which is significantly

higher than the models with RGB only data. This highlights the importance of

spectral diversity in pixel-level classification and confirms the value of attention-based

multimodal fusion and multi-scale decoding in real-world agricultural segmentation

tasks.

4.3 Qualitative Results

In addition to quantitative measurements, qualitative assessment provides further

visual evidence that the proposed model works well to segment complex scenes from

the field. This section presents side-by-side visual comparisons of the RGB-only and
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multispectral (MSI) input configurations using a few representative samples from the

WeedsGalore dataset test set.

Each visualization includes the original input image, ground truth annotation, and

predicted segmentation mask. Additionally, the individual spectral bands—RGB,

Near-Infrared (NIR), and Red-Edge (RE) were visualized for the MSI setup to high-

light their contribution to model performance.

Example 1: Row-Structured Maize with Sparse Weeds

In Figure 4.1, the RGB-only model correctly identifies most background and some

crop regions, but fails to delineate small weeds and produces noisy predictions along

row boundaries. Thin crop structures are often missed or misclassified as weeds due

to limited spectral contrast in the RGB channels.

Example 2: Multispectral Input with Enhanced Delineation

Figure 4.2 and Figure 4.3 shows the segmentation output using MSI input. Compared

to the RGB-only result, the proposed model generates cleaner boundaries, accurately

distinguishes maize crops from surrounding weeds, and correctly identifies sparse

and occluded weed patches. The inclusion of NIR improves vegetation-background
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Figure 4.1: RGB-only configuration: input image (RGB), ground truth
mask, and prediction segmentation. There are blurred crop boundaries and
false-positive weed predictions.

separation, while Red-Edge contributes to detecting subtle differences in chlorophyll

concentration between crops and weeds.

4.4 Comparison with Baseline Methods

A further comparative analysis was conducted against baseline models reported in the

WeedsGalore benchmark [10] such as DeepLabv3+ and MaskFormer, respectively, two

different semantic segmentation paradigms: a CNN and a Transformer. All models

were evaluated on the identical 3-class background, crop, and weed segmentation,

using RGB only and multispectral (MSI: RGB + NIR + RE) input modalities under
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Figure 4.2: Multispectral configuration: input image (RGB, NIR, and RE
bands), ground truth, and predicted segmentation based on MSI input. The
output produces a sharp and accurate boundary for all classes.

the same testing conditions.

As presented in Table 4.2, the proposed model demonstrates superior performance

across both vegetation classes. It achieves a mean IoU (mIoU) of 90.04%, outper-

forming the best-performing baseline (DeepLabv3+ with MSI input) by a margin of
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Figure 4.3: Multispectral configuration: (RGB, NIR (grey scaled), and
RE (grey scaled) bands), followed by ground truth and MSI-based predicted
segmentation.

+7.14 percentage points. Relative to MaskFormer, improvements of +9.77% (MSI)

and +10.78% (RGB) are also observed.
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Table 4.2
Semantic segmentation performance (%) on the WeedsGalore test set

(3-class configuration).

Model Input Modality IoUCrop IoUWeed Mean IoU
DeepLabv3+ [10] RGB 67.93 72.08 79.33
DeepLabv3+ [10] MSI 72.93 77.31 82.90
MaskFormer [10] RGB 70.18 69.85 79.26
MaskFormer [10] MSI 69.49 73.33 80.27
Proposed Model RGB 39.05 52.24 63.08
Proposed Model MSI 87.00 84.11 90.04

The improvements in performance - and a comparison to existing architectures - con-

firm the complementary development of architectural combinations made throughout

this design. Specifically, the use of modality-specialized ConvNeXt encoders allows

independent extraction of spectral features, while Swin Transformer modules intro-

duce global context modeling through efficient self-attention. The gated multi-scale

fusion mechanism further enhances feature integration across modalities and spatial

resolutions, enabling robust boundary localization and semantic discrimination.

The RGB-only variant of the proposed model, while achieving an mIoU of 63.08%,

performs less competitively when compared to baseline models optimized for single-

modality settings. This can be attributed to several design-related factors:

† The architecture is tailored for multispectral inputs and includes modality-

specific encoders and fusion blocks. When restricted to RGB-only input, two

out of three encoder branches are inactive, resulting in reduced model utiliza-

tion.
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† Unlike the baseline models, which are fully optimized for RGB, the proposed

model’s components—particularly the gated fusion and Swin Transformer mod-

ules—are under-used in the absence of multispectral diversity.

† The training configuration was primarily optimized for MSI, and no separate

tuning or architecture pruning was performed for RGB-only inference.

Despite this, the large gap between the RGB-only (63.08%) and MSI configuration

(90.04%) underscores the critical role of spectral diversity in achieving high segmen-

tation accuracy.

The proposed model achieved the highest segmentation performance in the Weeds-

Galore benchmark compared to previously reported studies. Its performance margin

across both crop and weed classes demonstrates its potential for use in precision

agriculture, particularly when collected in multispectral UAV conditions.
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Chapter 5

Cross-Domain Generalization

Experiments

For real-world precision agriculture applications, semantic segmentation models must

be able to perform universally across various field conditions, crop types, and sensor

arrangements. However, most state-of-the-art approaches are trained and evaluated

only in a single dataset domain, reducing their robustness in domain shift.

This chapter evaluates the proposed segmentation model’s generalization performance

beyond the source domain (WeedsGalore) using two external datasets: Carrots 2017

and Onions 2017. These datasets pose notable challenges due to their different crop

structures, imaging setups, and spatial configurations. Both zero-shot inference and
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few-shot adaptation experiments are conducted to assess model robustness and adapt-

ability.

5.1 Target Datasets: Carrots 2017 and Onions

2017

The Carrots 2017 (CA17) and Onions 2017 (ON17) datasets were collected using a

ground-based robotic platform equipped with dual RGB and NIR cameras. NDVI

images were derived from the raw RGB-NIR data to facilitate spectral vegetation

analysis. Pixel-wise ground truth masks are available for three classes: background,

crop, and weed.

Table 5.1
Summary of Carrots 2017 and Onions 2017 Datasets

Attribute Carrots 2017 Onions 2017
Collection Date June 2017 April 2017
Location North Scarle, UK South Scarle, UK
Number of Images 20 20
Image Resolution 2428×1985 2419×1986
Modalities RGB, NIR, NDVI RGB, NIR, NDVI
Ground Truth Labels Background, Crop, Weed Background, Crop, Weed
Vegetation Density High Sparse
Crop Stage Late-stage carrots Early-stage onions
Crop Instances/Image 88 52
Weed Instances/Image 86 22

Compared to the structured maize fields of WeedsGalore, CA17 and ON17 introduce
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Figure 5.1: Top: Sample from Carrots 2017. Bottom: Sample from Onions
2017. Left: RGB input; Right: Ground truth mask (Red = Weed, Blue =
Crop, Black = Background).

domain shifts in canopy geometry, crop spacing, sensor angles, and spectral coverage

(absence of Red-Edge). These differences make them suitable benchmarks for testing

the generalization capacity of the proposed architecture.

5.2 Zero-Shot Evaluation

To evaluate out-of-domain generalization, the pretrained model was directly tested

on CA17 and ON17 without any fine-tuning. The model was trained on WeedsGalore

with five-channel inputs (RGB+NIR+RE), while CA17 and ON17 inputs were aligned

using RGB+NDVI and a zero-filled RE channel to maintain input dimensionality.
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Carrots 2017

The model showed strong performance on background pixels but failed to generalize

crop and weed classes due to occlusion, dense foliage, and structural variance.

† mIoU: 0.3596 Accuracy: 87.08%

† Crop IoU: 0.0141 Weed IoU: 0.1874

† F1 Scores: Crop = 0.0271, Weed = 0.3110

Onions 2017

Despite accurate background predictions, segmentation of thin, sparse onion crops

remained poor.

† mIoU: 0.3473 Accuracy: 91.89%

† Crop IoU: 0.0899 Weed IoU: 0.0210

† F1 Scores: Crop = 0.1509, Weed = 0.0411

Zero-shot transfer exhibited limited generalization. While background segmentation
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Figure 5.2: Carrots 2017 – Zero-shot prediction vs. ground truth. Crops
are under-segmented and misclassified as background.

remained effective, crop and weed classes were poorly segmented, motivating the need

for minimal adaptation.

5.3 Few-Shot Adaptation

To improve performance under domain shift, few-shot adaptation was explored. The

model was fine-tuned on N = {5, 10, 15} samples from each dataset using three

random splits per shot size. Only the decoder and fusion modules were updated

65



Figure 5.3: Onions 2017 – Zero-shot prediction vs. ground truth. Sparse
vegetation leads to under-segmentation of foreground classes.

while the pretrained ConvNeXt and Swin Transformer backbones remained frozen.

Table 5.2
Few-shot adaptation results on Carrots17 and Onions17 (mean ± std over

3 random splits).

Dataset Shots mIoU F1 Score Accuracy

Carrots17
5 0.6415 ± 0.0084 0.7610 ± 0.0087 0.9221 ± 0.0012
10 0.6764 ± 0.0029 0.7922 ± 0.0024 0.9283 ± 0.0003
15 0.6923 ± 0.0081 0.8051 ± 0.0066 0.9317 ± 0.0011

Onions17
5 0.5762 ± 0.0145 0.6825 ± 0.0152 0.9706 ± 0.0016
10 0.6154 ± 0.0052 0.7210 ± 0.0051 0.9743 ± 0.0004
15 0.6299 ± 0.0033 0.7341 ± 0.0037 0.9757 ± 0.0003

Adaptation led to substantial recovery in segmentation quality. The Carrots17

dataset benefited the most, with mIoU reaching 69.2% under 15-shot supervision.
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Onions17 exhibited more modest improvements, likely due to its simpler structure

and limited visual variation.

Figure 5.4: Carrots17 – Per-class IoU and F1 score before and after few-
shot adaptation.

Figure 5.5: Qualitative results on Carrots17. Left to right: RGB input,
ground truth, zero-shot prediction, few-shot prediction (5-shot).

Interestingly, performance gains plateaued between 10 and 15 shots in both datasets.

This suggests decreasing returns from additional supervision beyond a small sample

threshold. A potential explanation lies in scale mismatches between the source (UAV-

based) and target (ground robot) imagery—differences in viewpoint, spacing, and

object scale may introduce inconsistencies that limit transfer. To address this, future

adaptation efforts may benefit from scale-aware augmentations or larger support sets

(e.g., 50–100 samples) to cover broader intra-domain variability.
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Figure 5.6: Onions17 – Per-class IoU and F1 score before and after few-
shot adaptation.

Figure 5.7: Qualitative results on Onions17. Left to right: RGB input,
ground truth, zero-shot prediction, few-shot prediction (5-shot).

The proposed segmentation model exhibited limited zero-shot generalization, but

strong adaptability with minimal supervision. Few-shot fine-tuning with as few as

5–10 labeled images enabled rapid recovery of segmentation accuracy, validating the

model’s suitability for deployment in new field environments where annotations are

scarce.
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Chapter 6

Conclusion

The thesis presented a novel multimodal deep learning architecture for the semantic

segmentation of crops and weeds to enhance precision agriculture. Drawing on the

spectral richness of multispectral UAV imagery to look beyond simple RGB images,

the architecture contained modality-specific ConvNeXt encoders, Swin Transformer

refinement modules, a gated multi-scale fusion approach, and a context-aware de-

coder. The architecture was modular in its design (modular, scalable, etc.) and

could accommodate the spatial and spectral variability observed within agricultural

fields.

The model showed state-of-the-art segmentation performance on the WeedsGalore

benchmark, which consists of RGB, NIR, and Red-Edge (RE) bands, achieving a mean
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Intersection-over-Union (mIoU) of 90.04%—surpassing existing baselines including

DeepLabv3+ and MaskFormer by a significant margin. In addition to being statisti-

cally accurate, the model also showed robustness across class boundaries—particularly

for underrepresented or occluded crop and weed structures, due to its attention-based

fusion and spectral-aware design.

To evaluate the ability to generalize, a comprehensive range of cross-domain tests was

done using the Carrots 2017 and Onions 2017 datasets, which set new and difficult

challenges of crop geometry, planting density, and acquisition conditions. With zero-

shot evaluation, the deficiencies of the direct transfer approach were disclosed by the

fact that the model was not capable of correctly segmenting non-seen crop types with

just the pre-trained weights. In contrast, few-shot adaptation experiments, where 5

to 15 labeled samples were used, demonstrated the model’s good capability to gain

back strong performance only with a little supervision, i.e. the mIoU scores were

over 69% on Carrots 2017 and 63% on Onions 2017. So these results can be taken

as evidence of a practical application of the model in the real-world situations where

there are marked limitations on labeled data.

The study has limitations despite its contributions. The model was trained on a

single source domain, which may limit its exposure to broader crop and field varia-

tions. Additionally, the lack of Red-Edge channels in the external datasets required

70



zero-padding during domain adaptation, slightly reducing spectral effectiveness. Fur-

thermore, the observed performance plateau between 10 and 15 samples suggests a

possible bottleneck related to scale mismatches between datasets. Variations in plant

spacing, sensor height, and object size may restrict the model’s capacity to generalize

spatial patterns beyond those learned in the source domain.

Future work can build upon this foundation in several ways. Incorporating scale-

aware representations or positional encodings may address cross-domain resolution

issues. Integrating domain adaptation techniques—such as adversarial learning or

meta-learning—could further improve generalization to new crop types without rely-

ing on labeled data. Additionally, extending the model to support fine-grained weed

species segmentation would provide more actionable insights for agricultural robotics.

From a deployment perspective, efforts toward pruning, optimization, quantization,

and distillation can make the model feasible for real-time inference on edge devices

such as UAVs or embedded platforms.

In conclusion, this work demonstrates that deep multimodal architectures, when

guided by spectral understanding and modular design, can effectively advance the

state of semantic segmentation for precision agriculture. The model’s adaptability

with minimal supervision highlights its potential for rapid deployment across diverse

field conditions, contributing toward scalable, data-efficient solutions in sustainable

crop management.
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