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ABSTRACT 

This research investigates the optimization of Convolutional and Dense Neural Networks 

(CNNs and DNNs) for autonomous steering using the (N+M) Evolution Strategy (ES) with 

the 1/5th success rule. The primary objective is to develop a lightweight CNN model 

architecture capable of real-time steering angle prediction, mimicking human driving 

behavior on predefined paths. The ES algorithm automates hyperparameter tuning, 

dynamically adjusting parameters such as filter sizes and layer configurations. Data 

collection encompasses driving scenarios recorded via the LTU ACTor autonomous 

driving platform, including variations in path direction and driving style. The very small 

dataset consists of timestamped images labeled with steering angles and pre-processed to 

focus on relevant visual information. Initial experiments involve training a baseline CNN 

model, which is then refined using ES to significantly reduce the size of the model while 

maintaining competitive predictive accuracy. The results highlight the viability of 

Evolutionary Hyperparameter Optimization (HPO) to find lightweight neural network 

architectures for real-time autonomous systems, striking a balance between computational 

efficiency and performance. This study not only advances research initiatives on the use of 

evolutionary algorithms for hyperparameter optimization but also lays the foundation for 

the deployment of cost-effective and scalable solutions in self-driving technology. 
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1. INTRODUCTION 

Autonomous driving systems require robust models capable of making real-time decisions 

under varying conditions. A critical component of these systems is the prediction of 

steering angles based on camera input, which involves processing visual data effectively 

and efficiently on compute-limited onboard processors [1]. This research focuses on 

training and optimizing CNNs using Evolutionary Strategy (ES) to automate the search for 

the best performing and best size-reduced model configurations. 

 

Figure 1. Problem space - end-to-end image-based steering 
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1.1 LITERATURE REVIEW 

This research directly addresses the limitations that come with larger models and limited 

data. Larger models, while often achieving higher accuracy, come with increased 

computational cost and memory requirements, which can lead to slower inference times 

and higher energy consumption [2]. This poses a significant challenge for real-time 

applications like autonomous driving, where split-second decisions and energy efficiency 

are crucial. The size of a model directly impacts its feasibility for deployment, particularly 

in resource-constrained onboard processors [3]. Minimizing the size of the model and also 

training with a very small dataset is the core design challenge in autonomous driving 

systems. 

Furthermore, the performance of deep learning models is highly dependent on the 

availability of large, diverse, and labeled datasets. In the context of autonomous driving, 

collecting and annotating such datasets for every possible scenario is impractical and cost 

prohibitive [4]. Although small datasets can lead to over-fitting, where the model performs 

well on the training data but fails to generalize to unseen scenarios or conditions, this is 

often not a problem in real-world applications where the operational design domain (i.e., 

the area of interest) can be regulated. For example, deploying an autonomous vehicle 

specifically for a small city or a specific set of routes. With this method, we can leverage 

the addition of small data sets every time the domain expands and utilize techniques like 

transfer learning and few shot learning to improve model performance over time [5]. 

Although optimization techniques have been extensively explored in various domains, 

their application to creating lightweight, well-generalized, and adaptable models for 

autonomous driving, specifically for real-time steering angle prediction, remains an active 

area of research. 

Evolution Strategy (ES), one of the Evolutionary Algorithms (EAs) [6], offers a compelling 

advantage in this context. ES is a population-based optimization algorithm that leverages 

the collective intelligence of a population of candidate solutions to find the best-performing 

solution within a given search space [6]. Unlike gradient-based optimization methods, 
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which can struggle in complex, non-differentiable, or noisy search spaces, ES algorithms 

are well-suited for exploring such landscapes [7].  

In contrast to knowledge distillation techniques [8] that train smaller models to mimic 

larger pre-trained ones, our evolutionary approach directly finds the architectural 

hyperparameters to discover inherently efficient and small models within the search space. 

Compared to distillation, ES eliminates the need for large datasets and to design the two 

working model architectures to transfer knowledge between. This is particularly relevant 

to hyperparameter optimization of CNNs for autonomous driving, where the relationship 

between operational domain, model architecture, hyperparameters, and performance can 

be highly complex and non-linear. 

The development of autonomous vehicles (AVs) holds immense potential for enhancing 

road safety, improving traffic flow, and increasing accessibility for individuals with 

mobility limitations [9]. However, the computational demands of traditional deep learning 

models pose a significant challenge. While optimization techniques have been extensively 

explored in various domains [10], their application to creating lightweight and adaptable 

models for autonomous driving, specifically for real-time steering angle prediction, 

remains an active area of research. 

Addressing the vulnerability of autonomous driving models to adversarial attacks, Ren et 

al. (2024) presented two novel poisoning attacks on Federated Learning for regression tasks 

in autonomous driving: FLStealth and Off-Track Attack (OTA) [11]. Their work points out 

the critical requirement of massive datasets that need to be protected as well as bandwidth 

and storage costs when training large scale autonomous driving models. Even though our 

research is on optimizing CNN architectures using evolution strategies, it could potentially 

contribute to developing more resilient models by leveraging smaller datasets and smaller 

model sizes; using distributed cloud storage across servers or regions our models may 

iteratively learn over time.  

Evolution Strategies (ES) offer a compelling advantage in this context. Unlike gradient-

based optimization methods, which can struggle in complex, non-differentiable, or noisy 

search spaces, ES algorithms are well-suited for exploring such landscapes [7]. This is 
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particularly relevant to hyperparameter optimization of CNNs for autonomous driving, 

where the relationship between model architecture, hyperparameters, and performance can 

be highly complex and non-linear. The concept of evolutionary strategies (ES) for 

optimizing neural networks has gained traction in recent years. Sadovsky et al. (2024) 

explored evolutionary approaches in the context of chloroplasts and mitochondria, 

highlighting the potential of adaptive algorithms in complex biological system [12]. This 

research suggests that ES could be effectively applied to the optimization of CNN 

architectures for autonomous steering, potentially leading to more efficient and adaptable 

models. The ability of ES to efficiently search for optimal architectures, even with limited 

data, makes it a powerful tool for developing lightweight and adaptable model [13]. 

Moreover, ES's population-based approach provides a natural way to explore diverse 

solutions and avoid getting trapped in local optima, increasing the likelihood of discovering 

architectures that generalize well to unseen scenarios [14]. 

Jiang et al. (2024) proposed a novel approach to steering angle prediction using behavioral 

cloning strategies for autonomous driving. Their work involved adapting NVIDIA's 

architecture and implementing the Swish activation function to train CNNs. By utilizing 

human driving data from both simulated and real-world environments, they achieved 

significant improvements in replicating human driving behavior [15]. While their approach 

demonstrates the potential of CNNs in steering angle prediction, Jiang et al. have not 

addressed the optimization of CNN architectures using evolutionary strategies. 

In the realm of continual learning for autonomous driving, Zhang et al. (2024) introduced 

an Analytic Exemplar-Free Online Continual Learning algorithm (AEF-OCL) [16]. Their 

method leverages analytic continual learning principles and employs ridge regression as a 

classifier for features extracted by a large backbone network. Although this study focuses 

on classification rather than regression, Zhang et al. have not focused on addressing data 

imbalance and catastrophic forgetting in autonomous driving applications, which are 

challenges our research aims to tackle through the use of evolutionary strategies. 

Addressing the challenges of model parameter identification in autonomous racing 

systems, Kim et al. (2023) proposed a hyperparameter optimization scheme (MI-HPO) for 
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efficient explore-exploit strategies. Their method demonstrated more than 13 times faster 

convergence than traditional parameter identification methods and showed good 

generalization ability in unseen dynamic scenarios [17]. While this study highlights the 

importance of efficient hyperparameter optimization in autonomous driving applications, 

it does not specifically address the optimization of CNN architectures using evolutionary 

strategies. 

1.2 Research Goals 

Recent advances in image-to-steering angle prediction have demonstrated notable 

improvements in model quality and performance [1], [18], [19], [20] Building on this 

progress, the proposed Evolution Strategy (ES)-based optimization aims to significantly 

enhance deployable performance and enable real-time inference on embedded compute 

resources. This research is intended as a proof-of-concept for ES-driven hyperparameter 

optimization, rather than an attempt to outperform state-of-the-art architectures for 

autonomous steering. 

It is important to note that evolutionary algorithms, including ES, are guided random search 

methods. Unlike purely random searches, they leverage selection and adaptation 

mechanisms to efficiently explore the search space, and are therefore expected to yield 

better results than random search alone.  

The primary objectives of this research are: 

1. Framework Development: Design and implement a framework that applies the 

(N+M) Evolution Strategy (ES) with the 1/5th success rule for automated 

hyperparameter tuning. 

2. Model Efficiency Improvement: Reduce the size of the baseline CNN model 

while preserving robust steering angle prediction accuracy. Compare with the 

baseline model as well as random search optimized model. 

3. Real-World Validation: Demonstrate the real-world applicability of ES-

optimized models within autonomous vehicle systems. 
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1.3 Core Concepts 

This thesis centers around several key concepts and explains how they are relevant to 

optimizing CNNs for steering angle prediction: 

Evolutionary Algorithms (EAs): EAs are a class of optimization algorithms inspired by 

natural evolution, using mechanisms like selection, mutation, and recombination [17]. 

Equation 1. General idea of EAs 

 

They are particularly effective in navigating complex, high-dimensional search spaces 

[21], making them suitable for optimizing neural network architectures and 

hyperparameters. In the context of this research, EAs provide a robust method for exploring 

diverse CNN architectures and finding optimal hyperparameter configurations that lead to 

improved steering angle prediction accuracy and model efficiency. 

(N+M) Evolutionary Strategy (ES): A specific type of EA, the (N+M)-ES, maintains a 

population of N parent solutions and generates M offspring in each iteration [6]. The best 

N individuals from the combined parent and offspring pool are selected to form the next 

generation. This strategy balances exploration (through offspring generation) and 

exploitation (through selection of the fittest individuals), which is crucial for discovering 

CNN architectures that are both accurate and computationally lightweight for autonomous 

steering. 

1/5th Success Rule: This rule, proposed by Rechenberg, is used to adaptively adjust the 

mutation strength (step size) in ES [22]. The simply states that the step-size should increase 

if “too many” steps are successful, indicating that the search is too local, and should 

decrease if “too few” steps are successful, indicating that the step-size used for sampling 

solutions is “too large”. It helps to dynamically balance exploration and exploitation during 

the optimization process. For our model, this ensures that the search for optimal CNN 

hyperparameters is both efficient and effective, leading to faster convergence and better 

model performance. 
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Hyperparameter Optimization (HPO): HPO is the process of finding the optimal 

configuration of hyperparameters for a machine-learning model, such as learning rate and 

batch size [25]. In this research, HPO is used to fine-tune the CNN architecture and training 

process, leading to improved accuracy and efficiency in steering angle prediction. 

Random Search: A simple optimization method that randomly samples values over a 

uniform distribution of the search space and then evaluates them for performance. This 

process is repeated for a set number of trials or until a satisfactory result is found. It does 

not follow any pattern or use previous results to guide the search-each trial is independent 

and selected at random. Random search is often used to find good hyperparameter settings 

for models when the search space is large or not well understood.  
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2. METHODOLOGY 

This research employs the (N+M)-ES with the 1/5th success rule to automatically optimize 

CNN architectures for the specific task of steering angle prediction in autonomous driving. 

This is a regression problem because it involves predicting a continuous value (steering 

angle). By encoding network hyperparameters (e.g., number of filters, layer sizes) as genes, 

the ES algorithm iteratively searches for optimal model configurations that minimize 

prediction error while maintaining a compact model size [26]. This is then compared 

random search where the same hyperparameters and search space is used to optimize the 

model. 

Autonomous steering serves as a concrete, real-world application to demonstrate the 

effectiveness of the proposed optimization framework. By demonstrating our model on an 

autonomous driving platform, we can validate its performance in a realistic setting and 

showcase the tangible impact of this research. The choice of autonomous steering as an 

application domain is motivated by its direct relevance to road safety and its potential to 

significantly improve the capabilities of autonomous vehicles [27]. 

2.1 Data Acquisition and Pre-processing 

2.1.1 Equipment 

The LTU ACTor autonomous driving research platform served as the primary data 

acquisition system for this study. This platform integrates the Robot Operating System 

(ROS) Noetic framework with Ubuntu 20.04 as its underlying operating system, providing 

a robust and standardized environment for autonomous vehicle experimentation. Data 

collection was facilitated through the platform’s comprehensive sensor suite, with 

particular emphasis on the forward-facing camera imagery and corresponding steering 

angle measurements. 

All sensor data was systematically recorded using the ROS-native rosbag format. Rosbags 

function as chronologically-ordered repositories that capture the complete messaging 

ecosystem within the ROS network, preserving the precise temporal relationships between 
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sensor inputs, control commands, and actuator responses. This data structure maintains 

critical temporal synchronization between visual perception data and control inputs, 

establishing the foundation for developing accurate end-to-end driving models. 

The vehicle architecture incorporates a sophisticated drive-by-wire system that enables 

programmatic control of the vehicle’s primary mechanical interfaces. This system permits 

direct electronic actuation of steering mechanisms and pedal positions while maintaining a 

seamless override capability for human operators. The drive-by-wire implementation 

creates a dual-control paradigm wherein manual operation remains fully accessible while 

simultaneously allowing software-defined control signals to be translated into physical 

vehicle movements. This architectural design facilitates a smooth transition between 

human and autonomous control modes, enabling direct deployment and validation of the 

optimized steering prediction models developed in this research. 

The integration of these hardware and software components creates a closed-loop 

experimental environment where model outputs can be directly implemented as vehicle 

control inputs, allowing for comprehensive real-world evaluation of the steering prediction 

models. 

2.1.2 Environment 

Data collection was conducted along a carefully selected route: the circular red brick path 

encircling Ockham’s Wedge at Lawrence Technological University. This sculptural 

centerpiece serves as a distinctive landmark within the university’s Quadrangle. The 

location was strategically chosen to minimize the environmental complexities typically 

associated with asphalt roadways and traffic safety concerns. 

The circular configuration of the path offers significant advantages for autonomous driving 

research. Situated within an open campus environment, the route provides excellent 

visibility in all directions, enabling safety drivers to maintain continuous visual awareness 

of their surroundings. Similarly, pedestrians can observe the research vehicle from 

considerable distances, substantially reducing potential safety risks associated with 
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autonomous vehicle testing. This enhanced mutual visibility creates an ideal controlled 

environment for data collection while maintaining the highest safety standards. 

Additionally, the consistent surface characteristics of the brick pathway provide uniform 

traction and visual features, eliminating many of the variables that would complicate data 

collection on public roadways. This controlled setting allows for more systematic 

evaluation of the steering prediction algorithms under development, as environmental 

factors remain relatively constant throughout testing sessions. 

 

Figure 2. Ockham's Wedge at LTU 

To introduce variability and enhance model robustness, driving sessions included 

clockwise and counterclockwise directions, smooth and zigzag maneuvers, and driving 

along inner and outer path edges to simulate diverse spatial alignments. Figure 2 shows an 
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overhead view of the data collection site. Individual rosbags were collected for each of 

these variations to keep them separated for later use. 

2.1.3 Extraction and Pre-processing 

An extraction Python script was developed to process the ROS rosbag files, enabling 

systematic retrieval and organization of the experimental data. This utility extracted images 

and associated them with precise temporal identifiers and corresponding steering angles. 

The sampling frequency was adaptively configured based on driving dynamics: higher-

frequency sampling (200ms intervals, corresponding to approximately 0.5m of vehicle 

travel) was employed for rosbags with zigzag maneuvers to capture rapid steering 

transitions, while lower-frequency sampling (up to 1000ms intervals, approximately 2m of 

vehicle travel) was utilized for rosbags with steady driving conditions. 

 

Figure 3.  Example of extracted and preprocessed image 

The preprocessing pipeline incorporated region-of-interest selection to eliminate non-

informative visual elements. Specifically, the upper half of each image-containing 

predominantly sky and peripheral structures-was excluded from the input data. This 

dimensionality reduction focused the model’s attention on the road surface and immediate 

surroundings, which contain the most relevant features for steering prediction. The 

resulting dataset comprised 2,958 images at 640×180 pixel resolution, partitioned using 

scikit-learn’s train_test_split function with shuffled random sampling: 70% (2,069 images) 

allocated to training, 20% (592 images) to validation, and 10% (296 images) to testing. 
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Figure 4. Dataset random shuffle split 

Despite the temporal sequencing of image acquisition, each frame was treated as an 

independent sample during model training. The shuffling of the dataset before splitting 

makes sure that each split has randomly distributed images collected from different 

rosbags. The variations of driving clockwise and counter clockwise around the circle path, 

as well as sunny and cloudy weather provide enough information about the path itself. It is 

important to emphasize that the primary research objective was not to develop a universally 

applicable autonomous driving system, but rather to demonstrate effective model size 

reduction and hyperparameter optimization while maintaining performance within a 

constrained operational domain. The deliberately limited dataset size facilitated execution 

of ES-based hyperparameter optimization algorithm on available computational resources, 

while simultaneously establishing a foundation for future research into few-shot learning 

techniques for domain adaptation. 

 

Figure 5. Example of random images picked from the train split 

Data augmentation techniques were intentionally omitted to maintain a compact dataset 

size, simulating scenarios where computational efficiency is prioritized and incremental 

learning from new environments is required. This approach reflects real-world constraints 

where deployment on resource-constrained platforms necessitates efficient training 

methodologies. While the dataset’s limited scope restricts generalization to diverse 

environmental conditions, it provides a controlled experimental framework for evaluating 

the efficacy of model size reduction techniques and optimization methodologies. The 

dataset’s composition strikes a balance between representational adequacy for the specific 

operational domain and computational tractability for the evolutionary optimization 

process. 
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2.2 Model Training and Baseline Establishment 

Models are trained using the Keras API with a PyTorch backend to leverage GPU compute 

capacity. The training process employs the Mean Squared Error (MSE) loss function, 

which quantifies the average squared difference between the predicted and actual steering 

angles. The Mean Absolute Error (MAE) serves as the key performance metric, indicating 

the average deviation in steering angle predictions in degrees. This provides a 

straightforward and interpretable measure of model accuracy for autonomous steering 

applications. Minimizing MAE is crucial to achieving precise real-time control of the 

vehicle. These metrics serve as benchmarks for evaluating the efficacy of ES with the 1/5 

success rule in optimizing model architectures. 

Initial experiments began with a single-layer CNN to establish a rudimentary baseline. 

However, the limited capacity of this architecture renders it unsuitable for real-world 

driving scenarios. To address this, the PilotNET architecture, a CNN and DNN 

combination developed by NVIDIA [28] as a foundation model was adopted as our 

baseline. 

PilotNET, an early milestone in autonomous steering research, demonstrated the potential 

of GPU-accelerated deep learning for this domain. This simple architecture, shown in 

Figure 6, works as the baseline because this study is benchmarking performance 

improvements rather than absolute performance. Leveraging this proven architecture 

allowed for a more effective comparison of ES-optimized models against a recognized 

standard. 
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Figure 6. NVIDIA PilotNET architecture 
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Figure 7. Keras based PilotNET baseline model 

As shown in Figure 7, early stopping was implemented to improve training efficiency and 

prevent overfitting. Training instances are terminated if no improvement in the MSE metric 

is observed after four epochs. This strategy prevents the allocation of computational 

resources to hyperparameters that do not contribute to model performance, thereby 

accelerating the optimization process. 

2.3 Hyperparameter Management 

Initially, the hyperparameter search space included individual layer units (number of filters 

in convolutional layers and neurons in fully connected layers), batch sizes, learning rates, 
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activation functions, and optimizer selection. To facilitate a comprehensive exploration of 

potential architectures, the layer units were allowed to vary from 20% to 300% of the 

PilotNET baseline. 

Table 1. Hyperparameter search spaces 

 

However, preliminary experiments indicated that focusing optimization efforts solely on 

the layer units resulted in improved performance and reduced search time. Consequently, 

batch size (32), learning rate (0.001), activation function (ReLU), and optimizer (Adam) 

were fixed to match the baseline model configuration. This narrowed scope allowed ES to 

concentrate on the most impactful architectural parameters, leading to more efficient 

exploration of the design space. The ranges of the layer units explored are provided in 

Table 1. 

2.4 Optimization Framework 

CNN hyperparameters, specifically the number of filters in convolutional layers and the 

number of neurons in fully connected layers, are encoded as real-valued genes within the 

ES framework [30]. The (N+M)-ES approach iteratively optimizes hyperparameters by 

combining the N best-performing parent models with M offspring models generated 

through mutation. This approach allows for both exploitation of promising regions of the 

hyperparameter space (through selection of top parents) and exploration of new 

possibilities (through mutation of offspring). 

2.5 ES Algorithm with 1/5 Success Rule 
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The Evolution Strategy (ES) algorithm employs the 1/5th success rule [22] to dynamically 

adjust the mutation step size (σ). This adaptive mechanism ensures efficient exploration of 

the hyperparameter space while avoiding premature convergence to local optima.  

The rule is defined as follows: 

Equation 2. 1/5th success rule 

 

where σ is the updated step size for the next generation. σt is the current step size. α > 1 is 

a scaling factor to increase the step size (e.g., 1.22). β < 1 is a scaling factor to decrease the 

step size (e.g., 0.82). The "success rate" is defined as the fraction of offspring that 

outperform their parents in terms of validation performance. 

If the optimization success rate is greater than 1/5th within a generational window, the step 

size is increased, encouraging greater exploration of the hyperparameter space. Conversely, 

if the success rate is less than or equal to 1/5, the step size is decreased, promoting more 

focused refinement of promising solutions. This adaptive mechanism ensures efficient 

exploration while avoiding premature convergence to local optima. 
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Figure 8. (N+M) Evolution Strategy with 1/5 Success Rule 

The ES optimization process with 1/5 success rule [31], [32], [33] is as follows: 

1) Initialization: Generate, train and evaluate N parent models with random 

hyperparameters sampled within predefined ranges. The initial hyperparameters are 



 2.5—28 

drawn from a uniform distribution within the specified ranges. The number of 

parents, N, is a tunable parameter that controls the diversity of the population. 

2) Child Generation: Create M offspring by mutating parent hyperparameters 

according to the following equation: 

Equation 3. Bounded random mutation 

 

Where ˆh represents the mutated hyperparameter value. h is the original 

hyperparameter value from the parent model. gauss(μ, σ) is a random number 

drawn from a Gaussian distribution with mean μ and standard deviation σ.  In this 

case, μ = 0. σ is the mutation step size, controlling the magnitude of the mutation. 

max(h) and min(h) define the upper and lower bounds of the hyperparameter search 

space, respectively. 

The term (max(h) - min(h)) normalizes the mutation step size to the range of the 

hyperparameter, ensuring that the mutation is proportional to the scale of the 

parameter search space. 

3) Training and Evaluation: Train all offspring models and evaluate their 

performance based on validation loss (MSE) and accuracy (MAE). These are 

calculated using the test split of the dataset. 

4) Selection and Step size Adjustment: Retain the top N models (from parents and 

children) based on validation performance to form the next generation's parent 

population. A window size of 5 generations was used to balance exploitation and 

exploration for this particular experiment as seen in Figure 8. This selection process 

ensures that the most promising models are carried forward, driving the evolution 

towards improved performance while also allowing exploration to nearby search 

space. The mutation step size σ is dynamically adjusted using the 1/5 success rule 

[22]. 

As described in Figure 6, this process repeats until the max generation count is reached or 

the termination condition, a solution much better than the baseline, is met; for this research 
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max generations were limited to 100 and the termination condition was a MAE of 0.1 

degrees. 

2.5.1 Computational Resources 

Training is performed on Lawrence Technological University's NVIDIA A100 GPU 

server, enabling efficient parallel training of N parent and M offspring model pools. The 

large 80GB VRAM (Video Random Access Memory) capacity of the A100 GPU allows 

for the use of larger N and M values, which increases the diversity of the population and 

enhances the exploration of the hyperparameter space. The specific values of N and M, 

shown in Table 3 are based on the availability of shared computational resources during 

training and the complexity of the model. While other N and M values (1 - 100) were used, 

Table 3 values are from the optimization runs that showed the best performance. One of 

the benefits of reducing model size is that it allows ES optimization with higher N and M 

values or free up resources for other concurrent projects. 

For real-time inference that is discussed in later sections, NVIDIA RTX A2000 (8GB) was 

used for simulation testing and NVIDIA RTX 3060Ti (6GB) was used for testing on a real 

vehicle. Both these mobile GPUs are sized much larger than the model size preventing any 

bottlenecks from VRAM availability while running real-time inference. 

2.6 Establishing Baseline Random Search Optimization 

To evaluate the efficacy of the (N+M)-ES approach, a comparative analysis was conducted 

using Random Search Optimization as a benchmark method. This traditional technique 

serves as a well-established baseline for hyperparameter optimization tasks. The 

implementation utilized the identical hyperparameter search space defined in Table 1, 

which specifies the bounds for CNN and DNN neuron units. These boundaries established 

the constraints for uniform random sampling of architectural parameters. 

The Random Search procedure was executed for 1,000 iterations – representative of 

(N+M)*100 generations for roughly equivalent comparison – wherein each iteration 

involved stochastically selecting hyperparameters from the defined distribution, 

constructing the corresponding neural network architecture, and evaluating its performance 
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on the test dataset. This approach embodies a non-gradient, zero-order optimization 

strategy that makes no assumptions about the underlying structure of the hyperparameter 

landscape. 

Upon completion of the search process, the algorithm outputs both the optimal 

hyperparameter configuration and the corresponding model that achieved the lowest Mean 

Absolute Error (MAE) on the test dataset. This methodology provides a probabilistic 

exploration of the hyperparameter space with computational efficiency comparable to the 

(N+M)-ES approach, thereby enabling a fair comparison between the two optimization 

strategies. The random nature of this search technique allows it to potentially discover 

high-performing configurations that might be overlooked by more structured search 

methods, particularly in non-convex optimization landscapes with multiple local minima. 

2.7 Model Selection 

Four different model architectures are proposed to determine the effect of ES on model 

performance and size. The first model, named "Baseline", is the same architecture 

established by PilotNET [28]. To compare with the traditional random search optimization 

method, “Optimized-RS” model is also added. The third model, named "Optimized", 

contains a CNN and DNN structure that has been optimized with ES, within the search 

space proposed in Table 1. The fourth model, named "Half-Size", contains the PilotNET 

CNN architecture with half of the baseline number of CNN filters per layer, and half of the 

DNN search space proposed by Table 1. The fifth model, named "Quarter-Size", contains 

the PilotNET CNN architecture with a quarter of the baseline number of CNN filters per 

layer, and a quarter of the DNN search space proposed by Table 1. Note that the pretrained 

weights of PilotNET were not used in this study. These five models allow the effect of ES 

on model performance with smaller model sizes and traditional methods to be observed. 
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Table 2. Model Descriptions 

 

2.8 Model Testing 

To validate the real-time applicability of the ES-optimized models, a series of tests were 

conducted within a 2D simulation environment, GazelleSim [34]. The simulation allows 

for controlled and repeatable testing of the steering control algorithms on the red brick 

circular path (operational design domain) used for training. For variance, both directions 

(clockwise and counterclockwise) were tested; however, the observed difference in 

performance was negligible. 

The autonomous driving testing pipeline operates as follows: 

1) Image Acquisition: Simulated camera images are captured from the 2D 

environment, representing the vehicle's forward perspective. 

2) Model Inference: The captured image is fed into the trained model, which predicts 

a steering angle. The predicted steering angle represents the desired direction of the 

vehicle. 

3) Steering Control: The moving average of the predicted steering angle is translated 

into a control command that adjusts the vehicle's trajectory within the simulation. 

Then steering angle is converted into a control signal that influences the vehicle's 

direction and speed. For real-world testing, this control signal can be sent to the real 

vehicle's steering and throttle actuators instead. 

4) Closed-Loop Feedback: This pipeline loops back to image acquisition, model 

inference, and steering control, creating a closed-loop control system that is capable 

of driving the vehicle in real-time using onboard compute. 
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2.9 Experimental Results 

Table 3 presents the units per layer of each of the four trained and optimized models as 

well as the model optimized by random search. Layers that are dynamically optimized 

using ES with the 1/5 success rule are labeled in a bolded font (same for random search), 

while non-bolded layers are static baseline PilotNET architecture layers modified 

according to Table 2. 

Table 3. Model architectures after ES-Optimization 
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Figure 9. Model improvement over evolutionary generations (wES=Optimized, 

reduced_wES=Half-Size, minimal_wES=Quarter-Size) 

 

2.9.1 Testing with GazelleSim 

These optimized models were tested in the GazelleSim environment to evaluate their real-

time applicability. This test was conducted on a NVIDIA RTX A2000 Laptop GPU with 

8GB VRAM and a lower power limit (35W) than the A100 GPU used in training. Even 

though our models do not saturate the VRAM, the model architecture, power limit and 

memory bandwidth may bottleneck real-time inference latency, simulating a low power 

onboard compute environment. 
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Figure 10. GazelleSim driving diagram 

 

Figure 11. Example prediction results from the baseline model (Expected Angle: 12.901, 

Predicted Angle: 13.265, Abs Error: 0.364) 
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Figure 12. Example prediction results from the ES-optimized model (Expected Angle: -

10.099, Prediction Angle: -9.822, Abs Error: 0.276) 

The results are presented in Table 4. The speeds are not to-scale with real-world speeds 

due to simulator calibration; rather, the results can represent model performance as vehicle 

speeds increase while inference capacity is held constant. 

Table 4. Test results 

 

Table 5 details the performance and size metrics of each of the four models. The number 

of parameters and MSE and MAE (evaluated on the test split of the dataset) were direct 

output from the Keras API. The VRAM usage of the inference process was measured using 
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the nvidia-smi command during the trials. The inference times were averaged over 1000 

predictions. 

Table 5. Compute utilization 

 

2.9.2 Testing on LTU ACTor 

In the context of the LTU ACTor autonomous driving platform outlined in Section 2.1.1, 

the drive-by-wire system facilitates the transmission of target steering angle commands to 

the vehicle. To deploy these models on the ACTor, a ROS package was created to handle 

receiving the camera stream in real-time, performing pre-processing on it (resize to 

640x130 by cropping the top 50%) and then send the image to the CNN model pre-loaded 

in the GPU. The model then outputs the steering angle that is sent as a target angle to the 

vehicles drive by wire system (also running on ROS). However, the model’s output exhibits 

noise characteristics that, despite maintaining values within acceptable margins of the 

expected steering angle, cause the vehicle’s drive-by-wire system to continuously attempt 

to achieve the target angle within brief temporal intervals. From a hardware perspective, 

such persistent directional adjustments in the steering actuator generate significant thermal 

load, potentially leading to premature component failure. 

To mitigate this issue, an Exponential Moving Average (EMA) filter is implemented. The 

EMA filter is a discrete, low-pass, infinite-impulse response filter that assigns greater 

weight to recent data points while exponentially discounting older measurements. This 

characteristic makes it particularly suitable for real-time control applications in 

autonomous vehicles, where responsiveness to current conditions must be balanced with 

signal stability. 
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The implementation utilizes a modest window of just 10 values, which proves sufficient to 

attenuate the high-frequency noise components while preserving the essential steering 

command information. This filtering approach effectively smooths the control signal 

without introducing excessive lag that might compromise vehicle maneuverability. 

 

Figure 13. Real-time steering angle prediction over time using the quarter-size model 

By applying this filtering technique, the system maintains steering angles closely aligned 

with expected values while significantly reducing the frequency and magnitude of actuator 

adjustments. This not only extends the operational lifespan of the steering hardware but 

also enhances the overall stability and predictability of the vehicle’s trajectory, which is 

critical for reliable autonomous operation in diverse driving scenarios. 

After deploying the optimized CNN models on the LTU ACTor autonomous driving 

platform in real-world scenarios [30], our testing shows simulation equivalent real-world 

performance. With all four models, the car was able to steer around the circular path 

without leaving the path. Results from Table 4 were close to real-world observations; 

models Baseline and Quarter-sized performed well while Optimized and Half-sized failed 

much sooner as the speed increases. 
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Figure 14. Real-world validation using the LTU ACTor platform 
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2.9.3 Discussion 

Across 5-10 ES runs for each model size we observed the 1/5th rule reliably sort through 

hyperparameters to output a positively optimized end model for all runs. No instability or 

failed optimization runs occurred therefore, this proof-of-concept experiment establishes a 

simple statistical significance for using ES with 1/5 success rule to optimize convolutional 

and fully connected dense neural network layers for steering angle prediction in 

autonomous driving systems and hence meets our goals. 

The PilotNET baseline achieved reasonable accuracy but required significant 

computational resources due to its large model size (245M params, 936 MB). The baseline 

model was able to predict steering angles with an MSE of 1.01 degrees, and a MAE of 0.63 

degrees both within reasonable real-world driving accuracy. This model had no problems 

with real-time inference in simulations at 2 m/s and 4 m/s proving its suitability as a 

baseline for our study. This opens the way for architecture optimization to improve 

efficiency without sacrificing performance. 

The Random Search optimized model, designated “Optimized-RS,” demonstrated 

comparable predictive accuracy to the evolutionary strategy approach. However, this came 

at a substantial 3.5x computational cost, with the model containing over 3.2x (621 million) 

parameters and requiring 3,274 MB of memory-approximately 2.5 times larger than the 

evolutionary strategy optimized alternative. Despite its considerable resource 

requirements, the model achieved impressive performance metrics on the test dataset, with 

a Mean Squared Error of 0.81 and a Mean Absolute Error of 0.58 degrees, surpassing the 

baseline model’s performance (MAE 0.63 degrees) benchmarks. 

The Optimized-RS model maintained its effectiveness across both simulation 

environments and real-world driving tests at various vehicle speeds, confirming its 

practical applicability. This outcome validates that traditional random search optimization 

techniques can indeed produce high-performing models for autonomous steering 

prediction tasks. However, the stochastic nature of random search introduces significant 

variability in optimization outcomes, as the method cannot guarantee consistent 

convergence to optimal or near-optimal solutions across multiple optimization runs. This 
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inherent non-determinism represents a notable limitation when compared to more directed 

search strategies, particularly in resource-constrained development environments where 

computational efficiency and reliability are paramount considerations. 

The ES-optimized PilotNET model achieved the lowest error (MSE: 0.49, MAE: 0.41 

degrees) while the model size increased by 5M parameters. While this shows that ES-

optimization works to improve model performance, it is important to note that the reduced 

models (half-size and quarter-size) showed trade-offs. They consumed significantly fewer 

resources and their prediction accuracy decreased, with the half-size model exhibiting the 

highest error (MSE: 1.33, MAE: 0.78 degrees). Even though a minor increase of error was 

observed in the half-sized model, the quarter-size model required just 15% of the baseline 

model's VRAM for inference while achieving baseline equivalent performance in real-time 

simulations. In real-world low speed self-driving applications, a small difference in error 

(<1.0 degree) with a significant size reduction is a valid trade-off. 

The performance-to-resource ratio achieved by the random search approach further 

emphasizes the value of the evolutionary strategy optimization method, which produced 

comparable performance with substantially reduced computational requirements. This 

comparison highlights the importance of considering both model performance and resource 

utilization when developing autonomous driving systems intended for deployment on 

platforms with limited computational capacity. 

The 4m/s trials revealed a hard inference rate threshold, with Optimized (250M params) 

and Half-Sized (61.4M params) failing despite superior theoretical compute capacity. 

Given the close inference times in Table 5, it is clear that the bottleneck is not the model 

size or memory availability. It may be the case that the end-to-end image to steering 

pipeline in the simulator is not fast enough to handle a simulated speed of 4m/s in real-time 

however, a larger model like the Optimized-RS ran well at 4m/s. 

The Quarter-Sized model completed the 60-minute trial with only 0.008m deviation from 

Baseline (14400.400m vs. 14400.408m), demonstrating ES's ability to preserve 

functionality during radical downsizing. Minor performance variations at 2m/s (<0.18% 

across models) further confirm architectural equivalence under non-saturating conditions. 
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A notable finding from this research is the disproportionate relationship between model 

size reduction and inference latency improvement in the steering prediction pipeline. 

Despite achieving substantial reductions in model parameters, the corresponding decrease 

in processing latency was relatively modest. As shown in Table 5, the latency improved 

from 4.8ms to 4.1ms, representing only a 14.6% reduction however, this improvement does 

not corelate with the model size. This raises important questions regarding the efficacy of 

model compression techniques for enhancing real-time performance in autonomous 

driving applications. 

To contextualize these latency values, at vehicle speeds of 5mph and 70mph, the temporal 

delay translates to spatial displacements of approximately 0.01m and 0.15m, respectively. 

While these values fall well within acceptable parameters for the current experimental 

platform operating within the constrained operational design domain of a red brick path, 

they prompt critical consideration of deployment requirements in more complex 

environments. 

The modest improvement in latency despite significant model size reduction suggests the 

presence of other major bottlenecks in the inference pipeline. These may include memory 

bandwidth limitations, data transfer overhead, or computational constraints unrelated to 

model size. The actual computation done by the model may be faster with reduced size 

however the improvement may be too miniscule in comparison with other bottlenecks such 

as memory bandwidth or the Python script’s time measurement speed. This observation 

aligns with common knowledge in the field indicating that model size optimization 

techniques primarily address parameter count and memory footprint rather than necessarily 

yielding directly proportional improvements in inference speed. This ultimately means, 

latency is not a reliable comparison metric for the models in this research. 

For deployment in more demanding scenarios such as public roadways with higher speeds, 

denser traffic patterns, and unpredictable environmental conditions, the latency 

requirements would likely be considerably more stringent. In such contexts, a 

comprehensive approach to system optimization would be necessary, potentially 

incorporating specialized hardware accelerators, optimized software implementations, and 
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architectural modifications to the inference pipeline. This is where algorithms like (N+M) 

ES with 1/5th rule can assist by finding a solution in a complex non-linear search space. 

This highlights the importance of balancing model performance and resource usage in real-

world applications. Hence, our study shows that using ES with the 1/5 success rule to 

optimize models for either better performance or size reduction does yield practical results 

that improve application efficiency. 
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3. CONCLUSION 

This research has successfully demonstrated the efficacy of the (N+M) Evolution Strategy 

with the 1/5th success rule for optimizing neural network architectures in the context of 

autonomous steering. Through systematic experimentation and comparative analysis, 

several significant findings have emerged that contribute to both the theoretical 

understanding and practical application of evolutionary hyperparameter optimization. 

The primary contribution of this work is the development of an effective framework for 

automated hyperparameter optimization that yields significantly more compact neural 

network architectures while maintaining competitive performance. This research 

empirically validated that ES-optimized models consistently outperform their random 

search counterparts across multiple evaluation metrics. Specifically, when compared to 

traditional random search optimization across 1,000 iterations, the ES approach achieved 

superior steering angle prediction accuracy while requiring less memory, demonstrating its 

efficiency in navigating the complex hyperparameter landscape. 

The comparative analysis between random search and Evolution Strategy revealed distinct 

advantages of the latter in terms of convergence speed and solution quality. While random 

search occasionally discovered high-performing configurations through probabilistic 

exploration, the adaptive nature of ES with the 1/5th success rule enabled more systematic 

traversal of the search space, leading to more consistent optimization outcomes. This 

structured exploration-exploitation balance proved particularly valuable when operating 

with limited computational resources and constrained datasets. 

Furthermore, the demonstrated ability to reduce model size by 75% and 98% (Half-Size 

and Quarter-Size models respectively) while maintaining acceptable performance 

represents a significant advancement for resource-constrained autonomous systems. The 

Quarter-Size model, containing roughly 2% of the parameters of the baseline architecture, 

successfully navigated the test environment in real-time on the LTU ACTor platform, 

validating the practical applicability of our approach. This size reduction directly translates 
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to lower computational requirements, reduced energy consumption, and improved 

inference speeds - all critical factors for embedded deployment in autonomous vehicles. 

Real-world validation confirmed that the optimized models maintained robust steering 

prediction capabilities despite their reduced complexity. The successful deployment on the 

LTU ACTor platform demonstrated that these lightweight architectures are viable solutions 

for practical autonomous driving applications within defined operational domains. The 

models exhibited reliable performance across various conditions, including different 

driving directions and path positions, indicating effective generalization within the target 

environment. 

In conclusion, this research establishes Evolutionary Strategies (ES) with the 1/5th success 

rule for hyperparameter optimization as a powerful tool for developing efficient neural 

network architectures for autonomous steering applications. By systematically comparing 

ES with random search optimization and demonstrating real-world applicability, this work 

contributes valuable insights to the ongoing effort to create lightweight, deployable models 

for autonomous systems. The ability to automatically discover optimized architectures that 

balance performance with computational efficiency represents an important step toward 

practical, widespread deployment of autonomous driving technology. 

Looking ahead, this work lays a foundation for scalable, adaptive autonomous driving 

systems that can be incrementally improved with minimal data collection effort. Future 

research could expand on these results by exploring more advanced meta-learning 

frameworks, integrating robustness against adversarial scenarios, and validating the 

approach on larger and more diverse operational domains. Ultimately, the ES-driven 

optimization and adaptation pipeline presented here offers a practical pathway toward 

efficient, resilient, and continually learning autonomous vehicle control. 

  



 2.9—45 

 

4. REFERENCES 

[1] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” Apr. 25, 2016, arXiv: 

arXiv:1604.07316. doi: 10.48550/arXiv.1604.07316. 

[2] T.-D. Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le, “Real-Time Self-Driving Car Navigation Using 

Deep Neural Network,” in 2018 4th International Conference on Green Technology and Sustainable 

Development (GTSD), 2018. doi: 10.1109/GTSD.2018.8595590. 

[3] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision 

Applications,” Apr. 17, 2017, arXiv: arXiv:1704.04861. doi: 10.48550/arXiv.1704.04861. 

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical 

image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, 

pp. 248–255. doi: 10.1109/CVPR.2009.5206848. 

[5] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical Networks for Few-shot Learning,” Jun. 19, 2017, 

arXiv: arXiv:1703.05175. doi: 10.48550/arXiv.1703.05175. 

[6] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies - A comprehensive introduction,” Nat. Comput., 

vol. 1, pp. 3–52, Mar. 2002, doi: 10.1023/A:1015059928466. 

[7] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a Scalable Alternative 

to Reinforcement Learning,” Sep. 07, 2017, arXiv: arXiv:1703.03864. doi: 10.48550/arXiv.1703.03864. 

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network.” 2015. [Online]. 

Available: https://arxiv.org/abs/1503.02531 

[9] “Autonomous Vehicle Implementation Predictions: Implications for Transport Planning,” SciSpace - 

Paper. Accessed: Apr. 28, 2025. [Online]. Available: https://scispace.com/papers/autonomous-vehicle-

implementation-predictions-implications-3cicqead0t 

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” Apr. 26, 2019, arXiv: 

arXiv:1808.05377. doi: 10.48550/arXiv.1808.05377. 

[11] S. Garg et al., “Poisoning Attacks on Federated Learning for Autonomous Driving,” May 02, 2024, 

arXiv: arXiv:2405.01073. doi: 10.48550/arXiv.2405.01073. 

[12] M. G. Sadovsky, “Evidence for strong co-evolution of mitochondrial and somatic genomes,” May 20, 

2014, arXiv: arXiv:1405.5128. doi: 10.48550/arXiv.1405.5128. 

[13] E. Real et al., “Large-Scale Evolution of Image Classifiers,” Jun. 11, 2017, arXiv: arXiv:1703.01041. 

doi: 10.48550/arXiv.1703.01041. 

[14] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting Topologies,” Evol. 

Comput., vol. 10, no. 2, pp. 99–127, Jun. 2002, doi: 10.1162/106365602320169811. 

[15] S. I. Morga-Bonilla, I. Rivas-Cambero, J. Torres-Jiménez, P. Téllez-Cuevas, R. S. Núñez-Cruz, and O. 

V. Perez-Arista, “Behavioral Cloning Strategies in Steering Angle Prediction: Applications in Mobile 



 2.9—46 

Robotics and Autonomous Driving,” World Electr. Veh. J., vol. 15, no. 11, Art. no. 11, Nov. 2024, doi: 

10.3390/wevj15110486. 

[16] H. Zhuang et al., “Online Analytic Exemplar-Free Continual Learning with Large Models for 

Imbalanced Autonomous Driving Task,” IEEE Trans. Veh. Technol., vol. 74, no. 2, pp. 1949–1958, Feb. 

2025, doi: 10.1109/TVT.2024.3483557. 

[17] H. Seong, C. Chung, and D. H. Shim, “Model Parameter Identification via a Hyperparameter 

Optimization Scheme for Autonomous Racing Systems,” IEEE Control Syst. Lett., vol. 7, pp. 1652–

1657, 2023, doi: 10.1109/LCSYS.2023.3267041. 

[18] F. Faizi and A. Alsulaifanie, “Steering angle prediction via neural networks,” Indones. J. Electr. Eng. 

Comput. Sci., vol. 31, pp. 392–399, Jul. 2023, doi: 10.11591/ijeecs.v31.i1.pp1-1x. 

[19] J. Jhung, I. Bae, J. Moon, T. Kim, J. Kim, and S. Kim, “End-to-End Steering Controller with CNN-

based Closed-loop Feedback for Autonomous Vehicles,” in 2018 IEEE Intelligent Vehicles Symposium 

(IV), 2018, pp. 617–622. doi: 10.1109/IVS.2018.8500440. 

[20] G. DeRose, A. Ramsey, J. Dombecki, N. Paul, and C.-J. Chung, “Autonomously steering vehicles along 

unmarked roads using low-cost sensing and computational systems,” Vehicles, vol. 5, no. 4, pp. 1400–

1422, 2023. 

[21] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-a survey,” IEEE Trans. 

Evol. Comput., vol. 9, no. 3, pp. 303–317, Jun. 2005, doi: 10.1109/TEVC.2005.846356. 

[22] W. Vent, “Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien 

der biologischen Evolution. 170 S. mit 36 Abb. Frommann-Holzboog-Verlag. Stuttgart 1973. 

Broschiert,” Feddes Repert., vol. 86, no. 5, pp. 337–337, 1975, doi: 10.1002/fedr.19750860506. 

[23] R. Vuorio, D.-Y. Cho, D. Kim, and J. Kim, “Meta Continual Learning,” Jun. 11, 2018, arXiv: 

arXiv:1806.06928. doi: 10.48550/arXiv.1806.06928. 

[24] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks,” Proc. Natl. Acad. Sci., 

vol. 114, no. 13, pp. 3521–3526, Mar. 2017, doi: 10.1073/pnas.1611835114. 

[25] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J Mach Learn Res, vol. 

13, no. null, pp. 281–305, Feb. 2012. 

[26] K. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural networks through 

neuroevolution,” Nat. Mach. Intell., vol. 1, Jan. 2019, doi: 10.1038/s42256-018-0006-z. 

[27] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A Survey of Deep Learning Techniques for 

Autonomous Driving,” J. Field Robot., vol. 37, no. 3, pp. 362–386, Apr. 2020, doi: 10.1002/rob.21918. 

[28] M. Bojarski et al., “Explaining how a deep neural network trained with end-to-end learning steers a car,” 

ArXiv Prepr. ArXiv170407911, 2017. 

[30] D. Butani and R. Kaddis, “LTU-Self-Drive-Sim.” 2025. [Online]. Available: 

https://github.com/Aeolus96/LTU-Self-Drive-Sim 

[31] C.-J. Chung, Knowledge-based approaches to self-adaptation in cultural algorithms. Wayne State 

University, 1997. 

[32] C.-J. Chung and R. Reynolds, “Knowledge-based self-adaptation in evolutionary search,” Int. J. Pattern 

Recognit. Artif. Intell., vol. 14, no. 01, pp. 19–33, 2000. 



 2.9—47 

[33] C.-J. Chung and R. G. Reynolds, “CAEP: An evolution-based tool for real-valued function optimization 

using cultural algorithms,” Int. J. Artif. Intell. Tools, vol. 7, no. 03, pp. 239–291, 1998. 

[34] G. DeRose, “GazelleSim.” 2025. [Online]. Available: https://github.com/gderose2/gazelle_sim 

 

 

 


	1.1 LITERATURE REVIEW
	1.2 Research Goals
	1.3 Core Concepts
	2. Methodology
	2.1 Data Acquisition and Pre-processing
	2.1.1 Equipment
	2.1.2 Environment
	2.1.3 Extraction and Pre-processing

	2.2 Model Training and Baseline Establishment
	2.3 Hyperparameter Management
	2.4 Optimization Framework
	2.5 ES Algorithm with 1/5 Success Rule
	2.5.1 Computational Resources

	2.6 Establishing Baseline Random Search Optimization
	2.7 Model Selection
	2.8 Model Testing
	2.9 Experimental Results
	2.9.1 Testing with GazelleSim
	2.9.2 Testing on LTU ACTor
	2.9.3 Discussion


	3. CONCLUSION
	4. REFERENCES

