
 i

LAWRENCE TECHNOLOGICAL UNIVERSITY

College of Arts & Sciences

Department of Math and Computer Science

EVOLUTIONARY OPTIMIZATION TO FIND LIGHTWEIGHT

MODELS FOR AUTONOMOUS STEERING

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Awarded Spring 2025

BY

DEVSON BUTANI

©2025 Devson Butani . All rights reserved

Advisor: Dr. Chan-Jin “CJ” Chung

Date: May 13, 2025

 ii

This thesis has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Computer Science.

Department of Math and Computer Science, College of Arts and Sciences, Lawrence

Technological University

 Thesis Advisor: Dr. Chan-Jin “CJ” Chung

 Committee Member: Dr. Eric Martinson

 Committee Member: Dr. Corey Bohil

 Department Chair: Dr. Eric Martinson

 iii

ABSTRACT

This research investigates the optimization of Convolutional and Dense Neural Networks

(CNNs and DNNs) for autonomous steering using the (N+M) Evolution Strategy (ES) with

the 1/5th success rule. The primary objective is to develop a lightweight CNN model

architecture capable of real-time steering angle prediction, mimicking human driving

behavior on predefined paths. The ES algorithm automates hyperparameter tuning,

dynamically adjusting parameters such as filter sizes and layer configurations. Data

collection encompasses driving scenarios recorded via the LTU ACTor autonomous

driving platform, including variations in path direction and driving style. The very small

dataset consists of timestamped images labeled with steering angles and pre-processed to

focus on relevant visual information. Initial experiments involve training a baseline CNN

model, which is then refined using ES to significantly reduce the size of the model while

maintaining competitive predictive accuracy. The results highlight the viability of

Evolutionary Hyperparameter Optimization (HPO) to find lightweight neural network

architectures for real-time autonomous systems, striking a balance between computational

efficiency and performance. This study not only advances research initiatives on the use of

evolutionary algorithms for hyperparameter optimization but also lays the foundation for

the deployment of cost-effective and scalable solutions in self-driving technology.

 iv

ACKNOWLEDGEMENTS

I am profoundly thankful to my advisor, Dr. Chan Jin Chung, for his unwavering support,

mentorship, and encouragement. His dedication and leadership have not only guided this

research but also inspired me to strive for excellence.

I would like to express my deepest gratitude to Dr. Eric Martinson, a member of my thesis

committee, for his valuable insights, guidance, and constructive feedback throughout the

development of this research. His expertise has been instrumental in refining the scope and

direction of this work.

Their contributions have been vital to the completion of this thesis, and I am sincerely

grateful for their time and commitment.

 v

TABLE OF CONTENTS

Table Page

LIST OF TABLES ..1.1—7

LIST OF FIGURES ..1.1—8

1. INTRODUCTION ...1.1—10

1.1 LITERATURE REVIEW .. 1.1—11

1.2 Research Goals... 1.2—14

1.3 Core Concepts .. 1.3—15

2. Methodology ..1.3—17

2.1 Data Acquisition and Pre-processing ... 2.1—17

2.1.1 Equipment ... 2.1—17

2.1.2 Environment .. 2.1—18

2.1.3 Extraction and Pre-processing .. 2.1—20

2.2 Model Training and Baseline Establishment ... 2.2—22

2.3 Hyperparameter Management .. 2.3—24

2.4 Optimization Framework ... 2.4—25

2.5 ES Algorithm with 1/5 Success Rule ... 2.5—25

2.5.1 Computational Resources ... 2.5—29

2.6 Establishing Baseline Random Search Optimization 2.6—29

 vi

2.7 Model Selection ... 2.7—30

2.8 Model Testing .. 2.8—31

2.9 Experimental Results ... 2.9—32

2.9.1 Testing with GazelleSim ... 2.9—33

2.9.2 Testing on LTU ACTor ... 2.9—36

2.9.3 Discussion ... 2.9—39

3. CONCLUSION ..2.9—43

4. REFERENCES ...2.9—45

 1.1—7

LIST OF TABLES

Table Page

Table 1. Hyperparameter search spaces ... 2.3—25

Table 2. Model Descriptions .. 2.7—31

Table 3. Model architectures after ES-Optimization ... 2.9—32

Table 4. Test results ... 2.9—35

Table 5. Compute utilization.. 2.9—36

 1.1—8

LIST OF FIGURES

Figure Page

Figure 1. Problem space - end-to-end image-based steering 1.1—10

Figure 2. Ockham's Wedge at LTU ... 2.1—19

Figure 3. Example of extracted and preprocessed image 2.1—20

Figure 4. Dataset random shuffle split ... 2.1—21

Figure 5. Example of random images picked from the train split 2.1—21

Figure 6. NVIDIA PilotNET architecture .. 2.2—23

Figure 7. Keras based PilotNET baseline model ... 2.2—24

Figure 8. (N+M) Evolution Strategy with 1/5 Success Rule 2.5—27

Figure 9. Model improvement over evolutionary generations (wES=Optimized,

reduced_wES=Half-Size, minimal_wES=Quarter-Size) ... 2.9—33

Figure 10. GazelleSim driving diagram ... 2.9—34

Figure 11. Example prediction results from the baseline model (Expected Angle: 12.901,

Predicted Angle: 13.265, Abs Error: 0.364) .. 2.9—34

Figure 12. Example prediction results from the ES-optimized model (Expected Angle: -

10.099, Prediction Angle: -9.822, Abs Error: 0.276) ... 2.9—35

Figure 13. Real-time steering angle prediction over time using the quarter-size model

.. 2.9—37

Figure 14. Real-world validation using the LTU ACTor platform 2.9—38

 1.1—9

 1.1—10

1. INTRODUCTION

Autonomous driving systems require robust models capable of making real-time decisions

under varying conditions. A critical component of these systems is the prediction of

steering angles based on camera input, which involves processing visual data effectively

and efficiently on compute-limited onboard processors [1]. This research focuses on

training and optimizing CNNs using Evolutionary Strategy (ES) to automate the search for

the best performing and best size-reduced model configurations.

Figure 1. Problem space - end-to-end image-based steering

 1.1—11

1.1 LITERATURE REVIEW

This research directly addresses the limitations that come with larger models and limited

data. Larger models, while often achieving higher accuracy, come with increased

computational cost and memory requirements, which can lead to slower inference times

and higher energy consumption [2]. This poses a significant challenge for real-time

applications like autonomous driving, where split-second decisions and energy efficiency

are crucial. The size of a model directly impacts its feasibility for deployment, particularly

in resource-constrained onboard processors [3]. Minimizing the size of the model and also

training with a very small dataset is the core design challenge in autonomous driving

systems.

Furthermore, the performance of deep learning models is highly dependent on the

availability of large, diverse, and labeled datasets. In the context of autonomous driving,

collecting and annotating such datasets for every possible scenario is impractical and cost

prohibitive [4]. Although small datasets can lead to over-fitting, where the model performs

well on the training data but fails to generalize to unseen scenarios or conditions, this is

often not a problem in real-world applications where the operational design domain (i.e.,

the area of interest) can be regulated. For example, deploying an autonomous vehicle

specifically for a small city or a specific set of routes. With this method, we can leverage

the addition of small data sets every time the domain expands and utilize techniques like

transfer learning and few shot learning to improve model performance over time [5].

Although optimization techniques have been extensively explored in various domains,

their application to creating lightweight, well-generalized, and adaptable models for

autonomous driving, specifically for real-time steering angle prediction, remains an active

area of research.

Evolution Strategy (ES), one of the Evolutionary Algorithms (EAs) [6], offers a compelling

advantage in this context. ES is a population-based optimization algorithm that leverages

the collective intelligence of a population of candidate solutions to find the best-performing

solution within a given search space [6]. Unlike gradient-based optimization methods,

 1.1—12

which can struggle in complex, non-differentiable, or noisy search spaces, ES algorithms

are well-suited for exploring such landscapes [7].

In contrast to knowledge distillation techniques [8] that train smaller models to mimic

larger pre-trained ones, our evolutionary approach directly finds the architectural

hyperparameters to discover inherently efficient and small models within the search space.

Compared to distillation, ES eliminates the need for large datasets and to design the two

working model architectures to transfer knowledge between. This is particularly relevant

to hyperparameter optimization of CNNs for autonomous driving, where the relationship

between operational domain, model architecture, hyperparameters, and performance can

be highly complex and non-linear.

The development of autonomous vehicles (AVs) holds immense potential for enhancing

road safety, improving traffic flow, and increasing accessibility for individuals with

mobility limitations [9]. However, the computational demands of traditional deep learning

models pose a significant challenge. While optimization techniques have been extensively

explored in various domains [10], their application to creating lightweight and adaptable

models for autonomous driving, specifically for real-time steering angle prediction,

remains an active area of research.

Addressing the vulnerability of autonomous driving models to adversarial attacks, Ren et

al. (2024) presented two novel poisoning attacks on Federated Learning for regression tasks

in autonomous driving: FLStealth and Off-Track Attack (OTA) [11]. Their work points out

the critical requirement of massive datasets that need to be protected as well as bandwidth

and storage costs when training large scale autonomous driving models. Even though our

research is on optimizing CNN architectures using evolution strategies, it could potentially

contribute to developing more resilient models by leveraging smaller datasets and smaller

model sizes; using distributed cloud storage across servers or regions our models may

iteratively learn over time.

Evolution Strategies (ES) offer a compelling advantage in this context. Unlike gradient-

based optimization methods, which can struggle in complex, non-differentiable, or noisy

search spaces, ES algorithms are well-suited for exploring such landscapes [7]. This is

 1.1—13

particularly relevant to hyperparameter optimization of CNNs for autonomous driving,

where the relationship between model architecture, hyperparameters, and performance can

be highly complex and non-linear. The concept of evolutionary strategies (ES) for

optimizing neural networks has gained traction in recent years. Sadovsky et al. (2024)

explored evolutionary approaches in the context of chloroplasts and mitochondria,

highlighting the potential of adaptive algorithms in complex biological system [12]. This

research suggests that ES could be effectively applied to the optimization of CNN

architectures for autonomous steering, potentially leading to more efficient and adaptable

models. The ability of ES to efficiently search for optimal architectures, even with limited

data, makes it a powerful tool for developing lightweight and adaptable model [13].

Moreover, ES's population-based approach provides a natural way to explore diverse

solutions and avoid getting trapped in local optima, increasing the likelihood of discovering

architectures that generalize well to unseen scenarios [14].

Jiang et al. (2024) proposed a novel approach to steering angle prediction using behavioral

cloning strategies for autonomous driving. Their work involved adapting NVIDIA's

architecture and implementing the Swish activation function to train CNNs. By utilizing

human driving data from both simulated and real-world environments, they achieved

significant improvements in replicating human driving behavior [15]. While their approach

demonstrates the potential of CNNs in steering angle prediction, Jiang et al. have not

addressed the optimization of CNN architectures using evolutionary strategies.

In the realm of continual learning for autonomous driving, Zhang et al. (2024) introduced

an Analytic Exemplar-Free Online Continual Learning algorithm (AEF-OCL) [16]. Their

method leverages analytic continual learning principles and employs ridge regression as a

classifier for features extracted by a large backbone network. Although this study focuses

on classification rather than regression, Zhang et al. have not focused on addressing data

imbalance and catastrophic forgetting in autonomous driving applications, which are

challenges our research aims to tackle through the use of evolutionary strategies.

Addressing the challenges of model parameter identification in autonomous racing

systems, Kim et al. (2023) proposed a hyperparameter optimization scheme (MI-HPO) for

 1.2—14

efficient explore-exploit strategies. Their method demonstrated more than 13 times faster

convergence than traditional parameter identification methods and showed good

generalization ability in unseen dynamic scenarios [17]. While this study highlights the

importance of efficient hyperparameter optimization in autonomous driving applications,

it does not specifically address the optimization of CNN architectures using evolutionary

strategies.

1.2 Research Goals

Recent advances in image-to-steering angle prediction have demonstrated notable

improvements in model quality and performance [1], [18], [19], [20] Building on this

progress, the proposed Evolution Strategy (ES)-based optimization aims to significantly

enhance deployable performance and enable real-time inference on embedded compute

resources. This research is intended as a proof-of-concept for ES-driven hyperparameter

optimization, rather than an attempt to outperform state-of-the-art architectures for

autonomous steering.

It is important to note that evolutionary algorithms, including ES, are guided random search

methods. Unlike purely random searches, they leverage selection and adaptation

mechanisms to efficiently explore the search space, and are therefore expected to yield

better results than random search alone.

The primary objectives of this research are:

1. Framework Development: Design and implement a framework that applies the

(N+M) Evolution Strategy (ES) with the 1/5th success rule for automated

hyperparameter tuning.

2. Model Efficiency Improvement: Reduce the size of the baseline CNN model

while preserving robust steering angle prediction accuracy. Compare with the

baseline model as well as random search optimized model.

3. Real-World Validation: Demonstrate the real-world applicability of ES-

optimized models within autonomous vehicle systems.

 1.3—15

1.3 Core Concepts

This thesis centers around several key concepts and explains how they are relevant to

optimizing CNNs for steering angle prediction:

Evolutionary Algorithms (EAs): EAs are a class of optimization algorithms inspired by

natural evolution, using mechanisms like selection, mutation, and recombination [17].

Equation 1. General idea of EAs

They are particularly effective in navigating complex, high-dimensional search spaces

[21], making them suitable for optimizing neural network architectures and

hyperparameters. In the context of this research, EAs provide a robust method for exploring

diverse CNN architectures and finding optimal hyperparameter configurations that lead to

improved steering angle prediction accuracy and model efficiency.

(N+M) Evolutionary Strategy (ES): A specific type of EA, the (N+M)-ES, maintains a

population of N parent solutions and generates M offspring in each iteration [6]. The best

N individuals from the combined parent and offspring pool are selected to form the next

generation. This strategy balances exploration (through offspring generation) and

exploitation (through selection of the fittest individuals), which is crucial for discovering

CNN architectures that are both accurate and computationally lightweight for autonomous

steering.

1/5th Success Rule: This rule, proposed by Rechenberg, is used to adaptively adjust the

mutation strength (step size) in ES [22]. The simply states that the step-size should increase

if “too many” steps are successful, indicating that the search is too local, and should

decrease if “too few” steps are successful, indicating that the step-size used for sampling

solutions is “too large”. It helps to dynamically balance exploration and exploitation during

the optimization process. For our model, this ensures that the search for optimal CNN

hyperparameters is both efficient and effective, leading to faster convergence and better

model performance.

 1.3—16

Hyperparameter Optimization (HPO): HPO is the process of finding the optimal

configuration of hyperparameters for a machine-learning model, such as learning rate and

batch size [25]. In this research, HPO is used to fine-tune the CNN architecture and training

process, leading to improved accuracy and efficiency in steering angle prediction.

Random Search: A simple optimization method that randomly samples values over a

uniform distribution of the search space and then evaluates them for performance. This

process is repeated for a set number of trials or until a satisfactory result is found. It does

not follow any pattern or use previous results to guide the search-each trial is independent

and selected at random. Random search is often used to find good hyperparameter settings

for models when the search space is large or not well understood.

 2.1—17

2. METHODOLOGY

This research employs the (N+M)-ES with the 1/5th success rule to automatically optimize

CNN architectures for the specific task of steering angle prediction in autonomous driving.

This is a regression problem because it involves predicting a continuous value (steering

angle). By encoding network hyperparameters (e.g., number of filters, layer sizes) as genes,

the ES algorithm iteratively searches for optimal model configurations that minimize

prediction error while maintaining a compact model size [26]. This is then compared

random search where the same hyperparameters and search space is used to optimize the

model.

Autonomous steering serves as a concrete, real-world application to demonstrate the

effectiveness of the proposed optimization framework. By demonstrating our model on an

autonomous driving platform, we can validate its performance in a realistic setting and

showcase the tangible impact of this research. The choice of autonomous steering as an

application domain is motivated by its direct relevance to road safety and its potential to

significantly improve the capabilities of autonomous vehicles [27].

2.1 Data Acquisition and Pre-processing

2.1.1 Equipment

The LTU ACTor autonomous driving research platform served as the primary data

acquisition system for this study. This platform integrates the Robot Operating System

(ROS) Noetic framework with Ubuntu 20.04 as its underlying operating system, providing

a robust and standardized environment for autonomous vehicle experimentation. Data

collection was facilitated through the platform’s comprehensive sensor suite, with

particular emphasis on the forward-facing camera imagery and corresponding steering

angle measurements.

All sensor data was systematically recorded using the ROS-native rosbag format. Rosbags

function as chronologically-ordered repositories that capture the complete messaging

ecosystem within the ROS network, preserving the precise temporal relationships between

 2.1—18

sensor inputs, control commands, and actuator responses. This data structure maintains

critical temporal synchronization between visual perception data and control inputs,

establishing the foundation for developing accurate end-to-end driving models.

The vehicle architecture incorporates a sophisticated drive-by-wire system that enables

programmatic control of the vehicle’s primary mechanical interfaces. This system permits

direct electronic actuation of steering mechanisms and pedal positions while maintaining a

seamless override capability for human operators. The drive-by-wire implementation

creates a dual-control paradigm wherein manual operation remains fully accessible while

simultaneously allowing software-defined control signals to be translated into physical

vehicle movements. This architectural design facilitates a smooth transition between

human and autonomous control modes, enabling direct deployment and validation of the

optimized steering prediction models developed in this research.

The integration of these hardware and software components creates a closed-loop

experimental environment where model outputs can be directly implemented as vehicle

control inputs, allowing for comprehensive real-world evaluation of the steering prediction

models.

2.1.2 Environment

Data collection was conducted along a carefully selected route: the circular red brick path

encircling Ockham’s Wedge at Lawrence Technological University. This sculptural

centerpiece serves as a distinctive landmark within the university’s Quadrangle. The

location was strategically chosen to minimize the environmental complexities typically

associated with asphalt roadways and traffic safety concerns.

The circular configuration of the path offers significant advantages for autonomous driving

research. Situated within an open campus environment, the route provides excellent

visibility in all directions, enabling safety drivers to maintain continuous visual awareness

of their surroundings. Similarly, pedestrians can observe the research vehicle from

considerable distances, substantially reducing potential safety risks associated with

 2.1—19

autonomous vehicle testing. This enhanced mutual visibility creates an ideal controlled

environment for data collection while maintaining the highest safety standards.

Additionally, the consistent surface characteristics of the brick pathway provide uniform

traction and visual features, eliminating many of the variables that would complicate data

collection on public roadways. This controlled setting allows for more systematic

evaluation of the steering prediction algorithms under development, as environmental

factors remain relatively constant throughout testing sessions.

Figure 2. Ockham's Wedge at LTU

To introduce variability and enhance model robustness, driving sessions included

clockwise and counterclockwise directions, smooth and zigzag maneuvers, and driving

along inner and outer path edges to simulate diverse spatial alignments. Figure 2 shows an

 2.1—20

overhead view of the data collection site. Individual rosbags were collected for each of

these variations to keep them separated for later use.

2.1.3 Extraction and Pre-processing

An extraction Python script was developed to process the ROS rosbag files, enabling

systematic retrieval and organization of the experimental data. This utility extracted images

and associated them with precise temporal identifiers and corresponding steering angles.

The sampling frequency was adaptively configured based on driving dynamics: higher-

frequency sampling (200ms intervals, corresponding to approximately 0.5m of vehicle

travel) was employed for rosbags with zigzag maneuvers to capture rapid steering

transitions, while lower-frequency sampling (up to 1000ms intervals, approximately 2m of

vehicle travel) was utilized for rosbags with steady driving conditions.

Figure 3. Example of extracted and preprocessed image

The preprocessing pipeline incorporated region-of-interest selection to eliminate non-

informative visual elements. Specifically, the upper half of each image-containing

predominantly sky and peripheral structures-was excluded from the input data. This

dimensionality reduction focused the model’s attention on the road surface and immediate

surroundings, which contain the most relevant features for steering prediction. The

resulting dataset comprised 2,958 images at 640×180 pixel resolution, partitioned using

scikit-learn’s train_test_split function with shuffled random sampling: 70% (2,069 images)

allocated to training, 20% (592 images) to validation, and 10% (296 images) to testing.

 2.1—21

Figure 4. Dataset random shuffle split

Despite the temporal sequencing of image acquisition, each frame was treated as an

independent sample during model training. The shuffling of the dataset before splitting

makes sure that each split has randomly distributed images collected from different

rosbags. The variations of driving clockwise and counter clockwise around the circle path,

as well as sunny and cloudy weather provide enough information about the path itself. It is

important to emphasize that the primary research objective was not to develop a universally

applicable autonomous driving system, but rather to demonstrate effective model size

reduction and hyperparameter optimization while maintaining performance within a

constrained operational domain. The deliberately limited dataset size facilitated execution

of ES-based hyperparameter optimization algorithm on available computational resources,

while simultaneously establishing a foundation for future research into few-shot learning

techniques for domain adaptation.

Figure 5. Example of random images picked from the train split

Data augmentation techniques were intentionally omitted to maintain a compact dataset

size, simulating scenarios where computational efficiency is prioritized and incremental

learning from new environments is required. This approach reflects real-world constraints

where deployment on resource-constrained platforms necessitates efficient training

methodologies. While the dataset’s limited scope restricts generalization to diverse

environmental conditions, it provides a controlled experimental framework for evaluating

the efficacy of model size reduction techniques and optimization methodologies. The

dataset’s composition strikes a balance between representational adequacy for the specific

operational domain and computational tractability for the evolutionary optimization

process.

 2.2—22

2.2 Model Training and Baseline Establishment

Models are trained using the Keras API with a PyTorch backend to leverage GPU compute

capacity. The training process employs the Mean Squared Error (MSE) loss function,

which quantifies the average squared difference between the predicted and actual steering

angles. The Mean Absolute Error (MAE) serves as the key performance metric, indicating

the average deviation in steering angle predictions in degrees. This provides a

straightforward and interpretable measure of model accuracy for autonomous steering

applications. Minimizing MAE is crucial to achieving precise real-time control of the

vehicle. These metrics serve as benchmarks for evaluating the efficacy of ES with the 1/5

success rule in optimizing model architectures.

Initial experiments began with a single-layer CNN to establish a rudimentary baseline.

However, the limited capacity of this architecture renders it unsuitable for real-world

driving scenarios. To address this, the PilotNET architecture, a CNN and DNN

combination developed by NVIDIA [28] as a foundation model was adopted as our

baseline.

PilotNET, an early milestone in autonomous steering research, demonstrated the potential

of GPU-accelerated deep learning for this domain. This simple architecture, shown in

Figure 6, works as the baseline because this study is benchmarking performance

improvements rather than absolute performance. Leveraging this proven architecture

allowed for a more effective comparison of ES-optimized models against a recognized

standard.

 2.2—23

Figure 6. NVIDIA PilotNET architecture

 2.3—24

Figure 7. Keras based PilotNET baseline model

As shown in Figure 7, early stopping was implemented to improve training efficiency and

prevent overfitting. Training instances are terminated if no improvement in the MSE metric

is observed after four epochs. This strategy prevents the allocation of computational

resources to hyperparameters that do not contribute to model performance, thereby

accelerating the optimization process.

2.3 Hyperparameter Management

Initially, the hyperparameter search space included individual layer units (number of filters

in convolutional layers and neurons in fully connected layers), batch sizes, learning rates,

 2.5—25

activation functions, and optimizer selection. To facilitate a comprehensive exploration of

potential architectures, the layer units were allowed to vary from 20% to 300% of the

PilotNET baseline.

Table 1. Hyperparameter search spaces

However, preliminary experiments indicated that focusing optimization efforts solely on

the layer units resulted in improved performance and reduced search time. Consequently,

batch size (32), learning rate (0.001), activation function (ReLU), and optimizer (Adam)

were fixed to match the baseline model configuration. This narrowed scope allowed ES to

concentrate on the most impactful architectural parameters, leading to more efficient

exploration of the design space. The ranges of the layer units explored are provided in

Table 1.

2.4 Optimization Framework

CNN hyperparameters, specifically the number of filters in convolutional layers and the

number of neurons in fully connected layers, are encoded as real-valued genes within the

ES framework [30]. The (N+M)-ES approach iteratively optimizes hyperparameters by

combining the N best-performing parent models with M offspring models generated

through mutation. This approach allows for both exploitation of promising regions of the

hyperparameter space (through selection of top parents) and exploration of new

possibilities (through mutation of offspring).

2.5 ES Algorithm with 1/5 Success Rule

 2.5—26

The Evolution Strategy (ES) algorithm employs the 1/5th success rule [22] to dynamically

adjust the mutation step size (σ). This adaptive mechanism ensures efficient exploration of

the hyperparameter space while avoiding premature convergence to local optima.

The rule is defined as follows:

Equation 2. 1/5th success rule

where σ is the updated step size for the next generation. σt is the current step size. α > 1 is

a scaling factor to increase the step size (e.g., 1.22). β < 1 is a scaling factor to decrease the

step size (e.g., 0.82). The "success rate" is defined as the fraction of offspring that

outperform their parents in terms of validation performance.

If the optimization success rate is greater than 1/5th within a generational window, the step

size is increased, encouraging greater exploration of the hyperparameter space. Conversely,

if the success rate is less than or equal to 1/5, the step size is decreased, promoting more

focused refinement of promising solutions. This adaptive mechanism ensures efficient

exploration while avoiding premature convergence to local optima.

 2.5—27

Figure 8. (N+M) Evolution Strategy with 1/5 Success Rule

The ES optimization process with 1/5 success rule [31], [32], [33] is as follows:

1) Initialization: Generate, train and evaluate N parent models with random

hyperparameters sampled within predefined ranges. The initial hyperparameters are

 2.5—28

drawn from a uniform distribution within the specified ranges. The number of

parents, N, is a tunable parameter that controls the diversity of the population.

2) Child Generation: Create M offspring by mutating parent hyperparameters

according to the following equation:

Equation 3. Bounded random mutation

Where ˆh represents the mutated hyperparameter value. h is the original

hyperparameter value from the parent model. gauss(μ, σ) is a random number

drawn from a Gaussian distribution with mean μ and standard deviation σ. In this

case, μ = 0. σ is the mutation step size, controlling the magnitude of the mutation.

max(h) and min(h) define the upper and lower bounds of the hyperparameter search

space, respectively.

The term (max(h) - min(h)) normalizes the mutation step size to the range of the

hyperparameter, ensuring that the mutation is proportional to the scale of the

parameter search space.

3) Training and Evaluation: Train all offspring models and evaluate their

performance based on validation loss (MSE) and accuracy (MAE). These are

calculated using the test split of the dataset.

4) Selection and Step size Adjustment: Retain the top N models (from parents and

children) based on validation performance to form the next generation's parent

population. A window size of 5 generations was used to balance exploitation and

exploration for this particular experiment as seen in Figure 8. This selection process

ensures that the most promising models are carried forward, driving the evolution

towards improved performance while also allowing exploration to nearby search

space. The mutation step size σ is dynamically adjusted using the 1/5 success rule

[22].

As described in Figure 6, this process repeats until the max generation count is reached or

the termination condition, a solution much better than the baseline, is met; for this research

 2.6—29

max generations were limited to 100 and the termination condition was a MAE of 0.1

degrees.

2.5.1 Computational Resources

Training is performed on Lawrence Technological University's NVIDIA A100 GPU

server, enabling efficient parallel training of N parent and M offspring model pools. The

large 80GB VRAM (Video Random Access Memory) capacity of the A100 GPU allows

for the use of larger N and M values, which increases the diversity of the population and

enhances the exploration of the hyperparameter space. The specific values of N and M,

shown in Table 3 are based on the availability of shared computational resources during

training and the complexity of the model. While other N and M values (1 - 100) were used,

Table 3 values are from the optimization runs that showed the best performance. One of

the benefits of reducing model size is that it allows ES optimization with higher N and M

values or free up resources for other concurrent projects.

For real-time inference that is discussed in later sections, NVIDIA RTX A2000 (8GB) was

used for simulation testing and NVIDIA RTX 3060Ti (6GB) was used for testing on a real

vehicle. Both these mobile GPUs are sized much larger than the model size preventing any

bottlenecks from VRAM availability while running real-time inference.

2.6 Establishing Baseline Random Search Optimization

To evaluate the efficacy of the (N+M)-ES approach, a comparative analysis was conducted

using Random Search Optimization as a benchmark method. This traditional technique

serves as a well-established baseline for hyperparameter optimization tasks. The

implementation utilized the identical hyperparameter search space defined in Table 1,

which specifies the bounds for CNN and DNN neuron units. These boundaries established

the constraints for uniform random sampling of architectural parameters.

The Random Search procedure was executed for 1,000 iterations – representative of

(N+M)*100 generations for roughly equivalent comparison – wherein each iteration

involved stochastically selecting hyperparameters from the defined distribution,

constructing the corresponding neural network architecture, and evaluating its performance

 2.7—30

on the test dataset. This approach embodies a non-gradient, zero-order optimization

strategy that makes no assumptions about the underlying structure of the hyperparameter

landscape.

Upon completion of the search process, the algorithm outputs both the optimal

hyperparameter configuration and the corresponding model that achieved the lowest Mean

Absolute Error (MAE) on the test dataset. This methodology provides a probabilistic

exploration of the hyperparameter space with computational efficiency comparable to the

(N+M)-ES approach, thereby enabling a fair comparison between the two optimization

strategies. The random nature of this search technique allows it to potentially discover

high-performing configurations that might be overlooked by more structured search

methods, particularly in non-convex optimization landscapes with multiple local minima.

2.7 Model Selection

Four different model architectures are proposed to determine the effect of ES on model

performance and size. The first model, named "Baseline", is the same architecture

established by PilotNET [28]. To compare with the traditional random search optimization

method, “Optimized-RS” model is also added. The third model, named "Optimized",

contains a CNN and DNN structure that has been optimized with ES, within the search

space proposed in Table 1. The fourth model, named "Half-Size", contains the PilotNET

CNN architecture with half of the baseline number of CNN filters per layer, and half of the

DNN search space proposed by Table 1. The fifth model, named "Quarter-Size", contains

the PilotNET CNN architecture with a quarter of the baseline number of CNN filters per

layer, and a quarter of the DNN search space proposed by Table 1. Note that the pretrained

weights of PilotNET were not used in this study. These five models allow the effect of ES

on model performance with smaller model sizes and traditional methods to be observed.

 2.8—31

Table 2. Model Descriptions

2.8 Model Testing

To validate the real-time applicability of the ES-optimized models, a series of tests were

conducted within a 2D simulation environment, GazelleSim [34]. The simulation allows

for controlled and repeatable testing of the steering control algorithms on the red brick

circular path (operational design domain) used for training. For variance, both directions

(clockwise and counterclockwise) were tested; however, the observed difference in

performance was negligible.

The autonomous driving testing pipeline operates as follows:

1) Image Acquisition: Simulated camera images are captured from the 2D

environment, representing the vehicle's forward perspective.

2) Model Inference: The captured image is fed into the trained model, which predicts

a steering angle. The predicted steering angle represents the desired direction of the

vehicle.

3) Steering Control: The moving average of the predicted steering angle is translated

into a control command that adjusts the vehicle's trajectory within the simulation.

Then steering angle is converted into a control signal that influences the vehicle's

direction and speed. For real-world testing, this control signal can be sent to the real

vehicle's steering and throttle actuators instead.

4) Closed-Loop Feedback: This pipeline loops back to image acquisition, model

inference, and steering control, creating a closed-loop control system that is capable

of driving the vehicle in real-time using onboard compute.

 2.9—32

2.9 Experimental Results

Table 3 presents the units per layer of each of the four trained and optimized models as

well as the model optimized by random search. Layers that are dynamically optimized

using ES with the 1/5 success rule are labeled in a bolded font (same for random search),

while non-bolded layers are static baseline PilotNET architecture layers modified

according to Table 2.

Table 3. Model architectures after ES-Optimization

 2.9—33

Figure 9. Model improvement over evolutionary generations (wES=Optimized,

reduced_wES=Half-Size, minimal_wES=Quarter-Size)

2.9.1 Testing with GazelleSim

These optimized models were tested in the GazelleSim environment to evaluate their real-

time applicability. This test was conducted on a NVIDIA RTX A2000 Laptop GPU with

8GB VRAM and a lower power limit (35W) than the A100 GPU used in training. Even

though our models do not saturate the VRAM, the model architecture, power limit and

memory bandwidth may bottleneck real-time inference latency, simulating a low power

onboard compute environment.

 2.9—34

Figure 10. GazelleSim driving diagram

Figure 11. Example prediction results from the baseline model (Expected Angle: 12.901,

Predicted Angle: 13.265, Abs Error: 0.364)

 2.9—35

Figure 12. Example prediction results from the ES-optimized model (Expected Angle: -

10.099, Prediction Angle: -9.822, Abs Error: 0.276)

The results are presented in Table 4. The speeds are not to-scale with real-world speeds

due to simulator calibration; rather, the results can represent model performance as vehicle

speeds increase while inference capacity is held constant.

Table 4. Test results

Table 5 details the performance and size metrics of each of the four models. The number

of parameters and MSE and MAE (evaluated on the test split of the dataset) were direct

output from the Keras API. The VRAM usage of the inference process was measured using

 2.9—36

the nvidia-smi command during the trials. The inference times were averaged over 1000

predictions.

Table 5. Compute utilization

2.9.2 Testing on LTU ACTor

In the context of the LTU ACTor autonomous driving platform outlined in Section 2.1.1,

the drive-by-wire system facilitates the transmission of target steering angle commands to

the vehicle. To deploy these models on the ACTor, a ROS package was created to handle

receiving the camera stream in real-time, performing pre-processing on it (resize to

640x130 by cropping the top 50%) and then send the image to the CNN model pre-loaded

in the GPU. The model then outputs the steering angle that is sent as a target angle to the

vehicles drive by wire system (also running on ROS). However, the model’s output exhibits

noise characteristics that, despite maintaining values within acceptable margins of the

expected steering angle, cause the vehicle’s drive-by-wire system to continuously attempt

to achieve the target angle within brief temporal intervals. From a hardware perspective,

such persistent directional adjustments in the steering actuator generate significant thermal

load, potentially leading to premature component failure.

To mitigate this issue, an Exponential Moving Average (EMA) filter is implemented. The

EMA filter is a discrete, low-pass, infinite-impulse response filter that assigns greater

weight to recent data points while exponentially discounting older measurements. This

characteristic makes it particularly suitable for real-time control applications in

autonomous vehicles, where responsiveness to current conditions must be balanced with

signal stability.

 2.9—37

The implementation utilizes a modest window of just 10 values, which proves sufficient to

attenuate the high-frequency noise components while preserving the essential steering

command information. This filtering approach effectively smooths the control signal

without introducing excessive lag that might compromise vehicle maneuverability.

Figure 13. Real-time steering angle prediction over time using the quarter-size model

By applying this filtering technique, the system maintains steering angles closely aligned

with expected values while significantly reducing the frequency and magnitude of actuator

adjustments. This not only extends the operational lifespan of the steering hardware but

also enhances the overall stability and predictability of the vehicle’s trajectory, which is

critical for reliable autonomous operation in diverse driving scenarios.

After deploying the optimized CNN models on the LTU ACTor autonomous driving

platform in real-world scenarios [30], our testing shows simulation equivalent real-world

performance. With all four models, the car was able to steer around the circular path

without leaving the path. Results from Table 4 were close to real-world observations;

models Baseline and Quarter-sized performed well while Optimized and Half-sized failed

much sooner as the speed increases.

 2.9—38

Figure 14. Real-world validation using the LTU ACTor platform

 2.9—39

2.9.3 Discussion

Across 5-10 ES runs for each model size we observed the 1/5th rule reliably sort through

hyperparameters to output a positively optimized end model for all runs. No instability or

failed optimization runs occurred therefore, this proof-of-concept experiment establishes a

simple statistical significance for using ES with 1/5 success rule to optimize convolutional

and fully connected dense neural network layers for steering angle prediction in

autonomous driving systems and hence meets our goals.

The PilotNET baseline achieved reasonable accuracy but required significant

computational resources due to its large model size (245M params, 936 MB). The baseline

model was able to predict steering angles with an MSE of 1.01 degrees, and a MAE of 0.63

degrees both within reasonable real-world driving accuracy. This model had no problems

with real-time inference in simulations at 2 m/s and 4 m/s proving its suitability as a

baseline for our study. This opens the way for architecture optimization to improve

efficiency without sacrificing performance.

The Random Search optimized model, designated “Optimized-RS,” demonstrated

comparable predictive accuracy to the evolutionary strategy approach. However, this came

at a substantial 3.5x computational cost, with the model containing over 3.2x (621 million)

parameters and requiring 3,274 MB of memory-approximately 2.5 times larger than the

evolutionary strategy optimized alternative. Despite its considerable resource

requirements, the model achieved impressive performance metrics on the test dataset, with

a Mean Squared Error of 0.81 and a Mean Absolute Error of 0.58 degrees, surpassing the

baseline model’s performance (MAE 0.63 degrees) benchmarks.

The Optimized-RS model maintained its effectiveness across both simulation

environments and real-world driving tests at various vehicle speeds, confirming its

practical applicability. This outcome validates that traditional random search optimization

techniques can indeed produce high-performing models for autonomous steering

prediction tasks. However, the stochastic nature of random search introduces significant

variability in optimization outcomes, as the method cannot guarantee consistent

convergence to optimal or near-optimal solutions across multiple optimization runs. This

 2.9—40

inherent non-determinism represents a notable limitation when compared to more directed

search strategies, particularly in resource-constrained development environments where

computational efficiency and reliability are paramount considerations.

The ES-optimized PilotNET model achieved the lowest error (MSE: 0.49, MAE: 0.41

degrees) while the model size increased by 5M parameters. While this shows that ES-

optimization works to improve model performance, it is important to note that the reduced

models (half-size and quarter-size) showed trade-offs. They consumed significantly fewer

resources and their prediction accuracy decreased, with the half-size model exhibiting the

highest error (MSE: 1.33, MAE: 0.78 degrees). Even though a minor increase of error was

observed in the half-sized model, the quarter-size model required just 15% of the baseline

model's VRAM for inference while achieving baseline equivalent performance in real-time

simulations. In real-world low speed self-driving applications, a small difference in error

(<1.0 degree) with a significant size reduction is a valid trade-off.

The performance-to-resource ratio achieved by the random search approach further

emphasizes the value of the evolutionary strategy optimization method, which produced

comparable performance with substantially reduced computational requirements. This

comparison highlights the importance of considering both model performance and resource

utilization when developing autonomous driving systems intended for deployment on

platforms with limited computational capacity.

The 4m/s trials revealed a hard inference rate threshold, with Optimized (250M params)

and Half-Sized (61.4M params) failing despite superior theoretical compute capacity.

Given the close inference times in Table 5, it is clear that the bottleneck is not the model

size or memory availability. It may be the case that the end-to-end image to steering

pipeline in the simulator is not fast enough to handle a simulated speed of 4m/s in real-time

however, a larger model like the Optimized-RS ran well at 4m/s.

The Quarter-Sized model completed the 60-minute trial with only 0.008m deviation from

Baseline (14400.400m vs. 14400.408m), demonstrating ES's ability to preserve

functionality during radical downsizing. Minor performance variations at 2m/s (<0.18%

across models) further confirm architectural equivalence under non-saturating conditions.

 2.9—41

A notable finding from this research is the disproportionate relationship between model

size reduction and inference latency improvement in the steering prediction pipeline.

Despite achieving substantial reductions in model parameters, the corresponding decrease

in processing latency was relatively modest. As shown in Table 5, the latency improved

from 4.8ms to 4.1ms, representing only a 14.6% reduction however, this improvement does

not corelate with the model size. This raises important questions regarding the efficacy of

model compression techniques for enhancing real-time performance in autonomous

driving applications.

To contextualize these latency values, at vehicle speeds of 5mph and 70mph, the temporal

delay translates to spatial displacements of approximately 0.01m and 0.15m, respectively.

While these values fall well within acceptable parameters for the current experimental

platform operating within the constrained operational design domain of a red brick path,

they prompt critical consideration of deployment requirements in more complex

environments.

The modest improvement in latency despite significant model size reduction suggests the

presence of other major bottlenecks in the inference pipeline. These may include memory

bandwidth limitations, data transfer overhead, or computational constraints unrelated to

model size. The actual computation done by the model may be faster with reduced size

however the improvement may be too miniscule in comparison with other bottlenecks such

as memory bandwidth or the Python script’s time measurement speed. This observation

aligns with common knowledge in the field indicating that model size optimization

techniques primarily address parameter count and memory footprint rather than necessarily

yielding directly proportional improvements in inference speed. This ultimately means,

latency is not a reliable comparison metric for the models in this research.

For deployment in more demanding scenarios such as public roadways with higher speeds,

denser traffic patterns, and unpredictable environmental conditions, the latency

requirements would likely be considerably more stringent. In such contexts, a

comprehensive approach to system optimization would be necessary, potentially

incorporating specialized hardware accelerators, optimized software implementations, and

 2.9—42

architectural modifications to the inference pipeline. This is where algorithms like (N+M)

ES with 1/5th rule can assist by finding a solution in a complex non-linear search space.

This highlights the importance of balancing model performance and resource usage in real-

world applications. Hence, our study shows that using ES with the 1/5 success rule to

optimize models for either better performance or size reduction does yield practical results

that improve application efficiency.

 2.9—43

3. CONCLUSION

This research has successfully demonstrated the efficacy of the (N+M) Evolution Strategy

with the 1/5th success rule for optimizing neural network architectures in the context of

autonomous steering. Through systematic experimentation and comparative analysis,

several significant findings have emerged that contribute to both the theoretical

understanding and practical application of evolutionary hyperparameter optimization.

The primary contribution of this work is the development of an effective framework for

automated hyperparameter optimization that yields significantly more compact neural

network architectures while maintaining competitive performance. This research

empirically validated that ES-optimized models consistently outperform their random

search counterparts across multiple evaluation metrics. Specifically, when compared to

traditional random search optimization across 1,000 iterations, the ES approach achieved

superior steering angle prediction accuracy while requiring less memory, demonstrating its

efficiency in navigating the complex hyperparameter landscape.

The comparative analysis between random search and Evolution Strategy revealed distinct

advantages of the latter in terms of convergence speed and solution quality. While random

search occasionally discovered high-performing configurations through probabilistic

exploration, the adaptive nature of ES with the 1/5th success rule enabled more systematic

traversal of the search space, leading to more consistent optimization outcomes. This

structured exploration-exploitation balance proved particularly valuable when operating

with limited computational resources and constrained datasets.

Furthermore, the demonstrated ability to reduce model size by 75% and 98% (Half-Size

and Quarter-Size models respectively) while maintaining acceptable performance

represents a significant advancement for resource-constrained autonomous systems. The

Quarter-Size model, containing roughly 2% of the parameters of the baseline architecture,

successfully navigated the test environment in real-time on the LTU ACTor platform,

validating the practical applicability of our approach. This size reduction directly translates

 2.9—44

to lower computational requirements, reduced energy consumption, and improved

inference speeds - all critical factors for embedded deployment in autonomous vehicles.

Real-world validation confirmed that the optimized models maintained robust steering

prediction capabilities despite their reduced complexity. The successful deployment on the

LTU ACTor platform demonstrated that these lightweight architectures are viable solutions

for practical autonomous driving applications within defined operational domains. The

models exhibited reliable performance across various conditions, including different

driving directions and path positions, indicating effective generalization within the target

environment.

In conclusion, this research establishes Evolutionary Strategies (ES) with the 1/5th success

rule for hyperparameter optimization as a powerful tool for developing efficient neural

network architectures for autonomous steering applications. By systematically comparing

ES with random search optimization and demonstrating real-world applicability, this work

contributes valuable insights to the ongoing effort to create lightweight, deployable models

for autonomous systems. The ability to automatically discover optimized architectures that

balance performance with computational efficiency represents an important step toward

practical, widespread deployment of autonomous driving technology.

Looking ahead, this work lays a foundation for scalable, adaptive autonomous driving

systems that can be incrementally improved with minimal data collection effort. Future

research could expand on these results by exploring more advanced meta-learning

frameworks, integrating robustness against adversarial scenarios, and validating the

approach on larger and more diverse operational domains. Ultimately, the ES-driven

optimization and adaptation pipeline presented here offers a practical pathway toward

efficient, resilient, and continually learning autonomous vehicle control.

 2.9—45

4. REFERENCES

[1] M. Bojarski et al., “End to End Learning for Self-Driving Cars,” Apr. 25, 2016, arXiv:

arXiv:1604.07316. doi: 10.48550/arXiv.1604.07316.

[2] T.-D. Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le, “Real-Time Self-Driving Car Navigation Using

Deep Neural Network,” in 2018 4th International Conference on Green Technology and Sustainable

Development (GTSD), 2018. doi: 10.1109/GTSD.2018.8595590.

[3] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications,” Apr. 17, 2017, arXiv: arXiv:1704.04861. doi: 10.48550/arXiv.1704.04861.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical

image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009,

pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[5] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical Networks for Few-shot Learning,” Jun. 19, 2017,

arXiv: arXiv:1703.05175. doi: 10.48550/arXiv.1703.05175.

[6] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies - A comprehensive introduction,” Nat. Comput.,

vol. 1, pp. 3–52, Mar. 2002, doi: 10.1023/A:1015059928466.

[7] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a Scalable Alternative

to Reinforcement Learning,” Sep. 07, 2017, arXiv: arXiv:1703.03864. doi: 10.48550/arXiv.1703.03864.

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network.” 2015. [Online].

Available: https://arxiv.org/abs/1503.02531

[9] “Autonomous Vehicle Implementation Predictions: Implications for Transport Planning,” SciSpace -

Paper. Accessed: Apr. 28, 2025. [Online]. Available: https://scispace.com/papers/autonomous-vehicle-

implementation-predictions-implications-3cicqead0t

[10] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search: A Survey,” Apr. 26, 2019, arXiv:

arXiv:1808.05377. doi: 10.48550/arXiv.1808.05377.

[11] S. Garg et al., “Poisoning Attacks on Federated Learning for Autonomous Driving,” May 02, 2024,

arXiv: arXiv:2405.01073. doi: 10.48550/arXiv.2405.01073.

[12] M. G. Sadovsky, “Evidence for strong co-evolution of mitochondrial and somatic genomes,” May 20,

2014, arXiv: arXiv:1405.5128. doi: 10.48550/arXiv.1405.5128.

[13] E. Real et al., “Large-Scale Evolution of Image Classifiers,” Jun. 11, 2017, arXiv: arXiv:1703.01041.

doi: 10.48550/arXiv.1703.01041.

[14] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting Topologies,” Evol.

Comput., vol. 10, no. 2, pp. 99–127, Jun. 2002, doi: 10.1162/106365602320169811.

[15] S. I. Morga-Bonilla, I. Rivas-Cambero, J. Torres-Jiménez, P. Téllez-Cuevas, R. S. Núñez-Cruz, and O.

V. Perez-Arista, “Behavioral Cloning Strategies in Steering Angle Prediction: Applications in Mobile

 2.9—46

Robotics and Autonomous Driving,” World Electr. Veh. J., vol. 15, no. 11, Art. no. 11, Nov. 2024, doi:

10.3390/wevj15110486.

[16] H. Zhuang et al., “Online Analytic Exemplar-Free Continual Learning with Large Models for

Imbalanced Autonomous Driving Task,” IEEE Trans. Veh. Technol., vol. 74, no. 2, pp. 1949–1958, Feb.

2025, doi: 10.1109/TVT.2024.3483557.

[17] H. Seong, C. Chung, and D. H. Shim, “Model Parameter Identification via a Hyperparameter

Optimization Scheme for Autonomous Racing Systems,” IEEE Control Syst. Lett., vol. 7, pp. 1652–

1657, 2023, doi: 10.1109/LCSYS.2023.3267041.

[18] F. Faizi and A. Alsulaifanie, “Steering angle prediction via neural networks,” Indones. J. Electr. Eng.

Comput. Sci., vol. 31, pp. 392–399, Jul. 2023, doi: 10.11591/ijeecs.v31.i1.pp1-1x.

[19] J. Jhung, I. Bae, J. Moon, T. Kim, J. Kim, and S. Kim, “End-to-End Steering Controller with CNN-

based Closed-loop Feedback for Autonomous Vehicles,” in 2018 IEEE Intelligent Vehicles Symposium

(IV), 2018, pp. 617–622. doi: 10.1109/IVS.2018.8500440.

[20] G. DeRose, A. Ramsey, J. Dombecki, N. Paul, and C.-J. Chung, “Autonomously steering vehicles along

unmarked roads using low-cost sensing and computational systems,” Vehicles, vol. 5, no. 4, pp. 1400–

1422, 2023.

[21] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments-a survey,” IEEE Trans.

Evol. Comput., vol. 9, no. 3, pp. 303–317, Jun. 2005, doi: 10.1109/TEVC.2005.846356.

[22] W. Vent, “Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. 170 S. mit 36 Abb. Frommann-Holzboog-Verlag. Stuttgart 1973.

Broschiert,” Feddes Repert., vol. 86, no. 5, pp. 337–337, 1975, doi: 10.1002/fedr.19750860506.

[23] R. Vuorio, D.-Y. Cho, D. Kim, and J. Kim, “Meta Continual Learning,” Jun. 11, 2018, arXiv:

arXiv:1806.06928. doi: 10.48550/arXiv.1806.06928.

[24] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural networks,” Proc. Natl. Acad. Sci.,

vol. 114, no. 13, pp. 3521–3526, Mar. 2017, doi: 10.1073/pnas.1611835114.

[25] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J Mach Learn Res, vol.

13, no. null, pp. 281–305, Feb. 2012.

[26] K. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing neural networks through

neuroevolution,” Nat. Mach. Intell., vol. 1, Jan. 2019, doi: 10.1038/s42256-018-0006-z.

[27] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A Survey of Deep Learning Techniques for

Autonomous Driving,” J. Field Robot., vol. 37, no. 3, pp. 362–386, Apr. 2020, doi: 10.1002/rob.21918.

[28] M. Bojarski et al., “Explaining how a deep neural network trained with end-to-end learning steers a car,”

ArXiv Prepr. ArXiv170407911, 2017.

[30] D. Butani and R. Kaddis, “LTU-Self-Drive-Sim.” 2025. [Online]. Available:

https://github.com/Aeolus96/LTU-Self-Drive-Sim

[31] C.-J. Chung, Knowledge-based approaches to self-adaptation in cultural algorithms. Wayne State

University, 1997.

[32] C.-J. Chung and R. Reynolds, “Knowledge-based self-adaptation in evolutionary search,” Int. J. Pattern

Recognit. Artif. Intell., vol. 14, no. 01, pp. 19–33, 2000.

 2.9—47

[33] C.-J. Chung and R. G. Reynolds, “CAEP: An evolution-based tool for real-valued function optimization

using cultural algorithms,” Int. J. Artif. Intell. Tools, vol. 7, no. 03, pp. 239–291, 1998.

[34] G. DeRose, “GazelleSim.” 2025. [Online]. Available: https://github.com/gderose2/gazelle_sim

	1.1 LITERATURE REVIEW
	1.2 Research Goals
	1.3 Core Concepts
	2. Methodology
	2.1 Data Acquisition and Pre-processing
	2.1.1 Equipment
	2.1.2 Environment
	2.1.3 Extraction and Pre-processing

	2.2 Model Training and Baseline Establishment
	2.3 Hyperparameter Management
	2.4 Optimization Framework
	2.5 ES Algorithm with 1/5 Success Rule
	2.5.1 Computational Resources

	2.6 Establishing Baseline Random Search Optimization
	2.7 Model Selection
	2.8 Model Testing
	2.9 Experimental Results
	2.9.1 Testing with GazelleSim
	2.9.2 Testing on LTU ACTor
	2.9.3 Discussion

	3. CONCLUSION
	4. REFERENCES

