LTU ALERT:

Due to the expected snowstorm, campus will be closing at 3:00pm on Wednesday 02/12/25.  Students should log into Canvas for specific class information from their instructors. Please contact event organizers for information on specific activities.

Experimental Biomechanics Laboratory

Engineering
Biomedical Engineering
Labs

Location
E106, College of Engineering
Lawrence Technological University
21000 West Ten Mile Road
Southfield, MI 48075, USA

Director:   Eric G. Meyer, Ph.D. (bio)
Contact:  p. (248) 204-2606, f. (248) 204-2527, emeyer@ltu.edu

Dr. Meyer directs the Experimental Biomechanics Laboratory (EBL) at Lawrence Technological University with the goal to advance experimental biomechanics understanding by providing practical training to engineering and medical students and advancing the boundary of knowledge through translational research. The EBL enthusiastically cultivates collaborations with clinicians and the medical device industry to develop preventative and regenerative treatments for bone and soft tissue damage and disease. Recently, the EBL has partnered with ME and EE faculty to develop a ”Biorobotics/Haptics” facility that provides practical, hands-on experiences to students focused around the topics of sensing, perception, and control in next generation robotics.

Funding for the EBL equipment, supplies and personnel come from a variety of sources including; internal support from LTU, foundation grants, in kind donations from industry, and contract research project with industry partners. The EBL has supported LTU’s efforts for increased partnership with local hospitals such as Beaumont, Detroit Medical Center, Henry Ford and Providence. These projects are currently being developed in the areas of oral and orthopedic surgery, sports medicine, simulations, radiology and robotic surgery. The EBL has trained/supervised more than 20 undergraduate student research projects, 11 BME senior projects, and 3 graduate student research projects.

» Project Details

Human Participant Equipment

  • A new Biomechanics Laboratory (1300 sq. ft.) was custom designed as part of the 2016 Taubman Complex building.
  • Vicon three dimensional (3D) optical motion analysis system for gait analysis, biomechanical tissue testing, and 3D computer generated animation, including 10 Bonita cameras, and a Basler high speed reference video camera, with Nexus, Polygon and Plug In Gait software.
  • Two Kistler portable, multicomponent, force platforms with built-in amplifiers and external control units to specify the operating sensitivity/maximum force level. The forceplates are digitized by the Vicon system to determine the relevant Ground Reaction Force (GRF) vectors needed for the analysis of human movement.
  • Delsys® Trigno 16-channel, wireless sensor system with a variety of physiological monitoring sensors, including; surface electromyography (EMG), 3-axis accelerometers and/or, electrocardiography (EKG) electrodes. The wireless capability allows the muscle’s action potential and body segment’s movement data to be transmitted (over 100 ft) to the base station using a 2.4 GHz RF communication protocol. The digital data is transferred via USB to the computer and then recorded and analysed with Delsys EMGworks software. Or alternatively, the EMG voltage can be synced through the Vicon system to simultaneously record the 3D motions, GRF and EMG simultaneously during a human biomechanics experiment.
Principles of Computer Animation students doing motion capture of various character movements for 3D animation.
A BME senior projects group, working with Dr. Meyer to test their knee brace during a jump landing.

» View More

» Document Viewer

Use Your Cell Phone as a Document Camera in Zoom

  • What you will need to have and do
  • Download the mobile Zoom app (either App Store or Google Play)
  • Have your phone plugged in
  • Set up video stand phone holder

From Computer

Log in and start your Zoom session with participants

From Phone

  • Start the Zoom session on your phone app (suggest setting your phone to “Do not disturb” since your phone screen will be seen in Zoom)
  • Type in the Meeting ID and Join
  • Do not use phone audio option to avoid feedback
  • Select “share content” and “screen” to share your cell phone’s screen in your Zoom session
  • Select “start broadcast” from Zoom app. The home screen of your cell phone is now being shared with your participants.

To use your cell phone as a makeshift document camera

  • Open (swipe to switch apps) and select the camera app on your phone
  • Start in photo mode and aim the camera at whatever materials you would like to share
  • This is where you will have to position what you want to share to get the best view – but you will see ‘how you are doing’ in the main Zoom session.